
An Empirical Study of Object Category Recognition: Sequential Testing with
Generalized Samples

Liang Lin1,2, Shaowu Peng4, Jake Porway3, Song-Chun Zhu2,3 and Yongtian Wang1

1School of Info. Sci. and Tech., Beijing Institute of Technology, Beijing, China, {linliang,wyt}@bit.edu.cn
2Lotus Hill Research Institute, Ezhou, China

3Dept. of Statistic and Computer Science, University of California, Los Angeles, {sczhu,jporway}@stat.ucla.edu
4IPRAI, Huazhong University of Sci. and Tech.,Wuhan, China, {swpeng}@hust.edu.cn

Abstract

In this paper we present an empirical study of object cat-
egory recognition using generalized samples and a set of
sequential tests. We study 33 categories, each consisting of
a small data set of 30 instances. To increase the amount of
training data we have, we use a compositional object model
to learn a representation for each category from which we
select 30 additional templates with varied appearance from
the training set. These samples better span the appear-
ance space and form an augmented training set ΩT of 1980
(60×33) training templates. To perform recognition on a
testing image, we use a set of sequential tests to project ΩT

into different representation spaces to narrow the number of
candidate matches in ΩT . We use“graphlets”(structural el-
ements), as our local features and model ΩT at each stage
using histograms of graphlets over categories, histograms
of graphlets over object instances, histograms of pairs of
graphlets over objects, shape context. Each test is increas-
ingly computationally expensive, and by the end of the cas-
cade we have a small candidate set remaining to use with
our most powerful test, a top-down graph matching algo-
rithm. We achieve an 81.4 % classification rate on classify-
ing 800 testing images in 33 categories, 15.2% more accu-
rate than a method without generalized samples.

1. Introduction

Object category recognition is plagued by two opposing

needs, particularly when the categories have high intra-class

variance.

1. One wants many training instances to recognize the

many appearances an object can have when learning.

2. One wants few training instances to match to when

performing inference.

(a)

(b)

(c)

(d)

Figure 1. Illustration of object category recognition. Three typi-

cal testing images from 33 categories are shown in (a). The re-

lated sketch graphs are computed with graphlet detected in (b).

A cascade of discriminative steps prune candidate categories and

objects, as well as to localize the objects. Some candidates are

shown in (c). A layered graph matching algorithm is finally used

for top-down verification, as shown in (d).

This issue is generally resolved by solving one problem or

the other - either the task becomes classification [22, 16,

1

17, 6, 14], in which case many training instances are used

to learn a classifier that labels an entire image, or few candi-

dates are used to learn a single generative model [4, 13, 15]

that can often only recognize classes of object that are sim-

ilar in appearance and is computationally intensive to per-

form inference with.

To solve these problems, we use a compositional model

capable of representing object categories together with

a cascaded discriminative prune and a top-down graph-

matching algorithm in a systematic pipeline.

We solve the problem 1) of needing many data points for

training by learning an “And-Or graph” model[1, 9, 5, 18]

from a few training instances. This model was first pre-

sented by Han[5], Chen[9], and Zhu and Mumford[18] ex-

tensively discussed it as a large scale knowledge represen-

tation. [1] defined a probability model on the And-Or graph

that allows us to learn its parameters in a unified way for

each category. We can then draw samples from this model

that, though perceptually similar in appearance to the orig-

inal training data, are novel instances. This gives us better

coverage of the appearance space of the object category and

augments our training set.

We then solve problem 2) by pruning the augmented data

set using a cascaded prune to arrive at a small set of can-

didate categories and objects for a target image. At each

stage we project our large training set into a different space

and narrow down the candidates that could match our tar-

get image. We can then activate a flexible graph-matching

algorithm[10] to search the image for the small number of

candidates remaining. Similar approaches have performed

top-down matching using just a generative model, such as

K-Fans or the constellation model [13, 4, 15, 19]. How-

ever, not only might these approaches alone not be able

to learn large structural variations like the And-Or graph

can, they are computationally expensive to perform infer-

ence with [7]. Our use of generalized samples helps us rep-

resent the object space better and our sequential tests help

the efficiency of our top-down matching.

Our data consist of sketch representations of objects, in

which perceptually important parts have been outlined in a

graphical format, with each image comprised of nodes and

edges. The left and right columns of Figure 3 show exam-

ples of objects in this format. During the inference phase,

raw testing images are also converted to a sketch represen-

tation, from which we use their local structural elements

(called graphlets) as our features. Graphlets are merely

combinations of edgelets defined by their topological re-

lations to one another. Fig.1 (b) shows two typical sketch

graphs from raw images with graphlet detection. A dictio-

nary of common graphlets is learned for each category for

this task, as shown in Fig.5.

The sequential tests that we implement are a four stage

process that prunes the candidates in a coarse to fine man-

ner, both in the number of candidates kept at each stage and

the computational complexity of the object representation.

Each discriminative test is a simple nearest neighbor order-

ing of the candidates, but the representation of the candi-

dates changes at each stage. We first model each category

as a category histogram and use nearest neighbor to select

a set of candidate categories that the target may belong to

[8]. We then model each remaining object in each remain-

ing category as a sparse vector in a bag of words approach.

We next augment our vectors to include graphlet pair re-
lations, before finally using shape context [20] as our dis-

tance metric. By the end of this pruning stage, we have a

feasible number of candidates left to match, if any.

Our final verification stage uses a graph matching algo-

rithm [10]. This algorithm can match objects in sketch rep-

resentation, even under large geometric changes in appear-

ance. If the algorithm matches any candidates, it finds the

warping of the object that best fits the target.

We show detailed experiments on classifying and recog-

nizing objects from 33 categories, based on the augmented

training data. We also show that our system performs bet-

ter with synthesized data than without generalized sam-

ples, proving the importance of augmenting our dataset with

samples from the And-Or graph. In addition, we show the

classification rate of our approach as the number of train-

ing instances increases, compared to the PBT (Probabilistic

Boosting Tree) framework[22], which is used for learning

two-class and multi-class discriminative framework.

All the data used in our experiments are selected from

the Lotus Hill dataset [2], including both annotated images

for And-Or graph learning and raw testing images with their

category labels.

The remainder of this paper is arranged as follows. We

first briefly present the principle of synthesizing instances

from the And-Or graph model in Section 2. We then follow

with a description of the inference schemes with quantita-

tive experiments and comparisons in Section 3. The paper

is concluded in Section 4 with a discussion of future work.

2. Augmenting the Training Set
The And-Or graph was proposed by Chen [9] recently,

and a learning and sampling algorithm is presented in [1].

It is a compositional model capable of creating novel in-

stances from a small set of training data. By combining a

stochastic context free grammar with the constraints of a

Markov random field, it can represent the variability seen in

many object categories yet still constrain the appearances of

these objects so that they are perceptually equivalent. This

allows it to generate combinatorially many instances from a

small sample set.

Figure 3 shows 3 And-Or graphs, simplified for the sake

of space. On the left of each we see instances from 3 cate-

gories, teapot, clock, and car, and on the right we see high

Figure 2. Instances mapped into the appearance space. The orig-

inal samples are too sparse to cover the space, but samples from

the And-Or graph increase coverage.

Figure 3. Examples of And-Or graphs for three categories (in (b)),

and their selected training instances (in (a)) and corresponding

samples (in (c)). And The samples (in (c)) contain new object

configurations, compared with the training instances (in (a)). Note

that, for the sake of space, the And-Or graphs (in (b)) have been

abbreviated. For example, the terminal nodes show only one of

the many templates that could have been chosen by the Or Node

above.

and low resolution samples produced by the And-Or graphs

for these categories. We can see that the output images are

perceptually similar to the input images, though they may

have different part configurations than were observed, thus

comprising novel instances of the object.

The And-Or graph’s ability to generate novel instances

is what makes it particularly powerful for our task. By

sampling a large number of instances, we better cover the

Teapot

Bike

Lamp

Mug

MP3

C
ov

er
ag

e
ra

te

Number of training samples

Figure 4. Plot showing the percentage of the testing set producible

by an And-Or graph model learned with an increasing number of

training samples. We see that, with very few samples, the And-Or

graph can learn a model that covers nearly the entire appearance

space.

appearance space of an object category, thus more accu-

rately representing it in our discriminative tests and pro-

viding more candidates for our top-down match. Figure 2

illustrates this concept. The asterisks represent our initial

sample set, which doesn’t cover much of the appearance

space. Using just the initial set, we would likely not match

many of the target images using nearest neighbor. However,

with the samples from the And-Or graph included, pictured

as gray circles, we can cover a much wider portion of the

space, thus increasing the probability that we would find

matches for this category. Figure 3 (c) shows examples of

these samples at both high and low resolution, along with

the corresponding And-Or graph for that category (Figure 3

(b)). Note that, a few new configurations are synthesized,

as compared to the training instances (Figure 3 (a)).

To quantitatively illustrate the And-Or graph’s ability to

synthesize new object configurations, we collect a num-

ber of objects (about 50 for each category) which we as-

sume span the configuration space. We then learn And-Or

graph models for these categories using an increasing num-

ber of training samples. We then sample instances from

the learned model at each stage and measure how many in-

stances in our testing set are producible from this model.

Fig.4, shows the results for 5 categories as the training size

increases. We can see that all categories can learn the max-

imal coverage of the configuration space with as few as ten

archetypal training instances.

3. Inference
We next describe how to perform inference using the

augmented data set. We first select a dictionary of

Figure 5. The top detectable graphlets with typical examples from

raw images

“graphlets” to be used as local features, and describe the

approach to compute sketch graphs from raw images using

graphlet detection. Then we use four sequential bottom-up

tests and a top-down graph matching algorithm to classify

and recognize objects from raw images over 33 categories.

3.1. Graphlets - “the Visual Words”

We now have a huge training set of synthesized instances

from which to perform classification and, ultimately, recog-

nition. We next learn a dictionary of graphlets to use as local

features for candidate pruning as well as building a sketch

representation of an unlabeled image.

Graphlets can be defined by a 3-tuple gi = (Vi, Ei, Ai),
with Vi being a set of vertices (nodes), Ei a set of edges for

connectivity of the nodes, and Ai a set of attributes for po-

sition, orientation, affine transformations, and deformations

of the graphlet.

It is straightforward to extract graphlets from a perfect

sketch representation using a depth-first search algorithm.

More complex topologies are given a shorter coding length

to encourage the algorithm to select bigger graphlets. We

then cluster all the graphlets found over all training in-

stances based on their geometry and topological structure.

Graphlets are only matched to graphlets with the same

topology, and a distance between these pairs is defined us-

ing a global affine transformation Ai and a TPS warping for

deformation Fi(x, y) on a 2D domain Λi covered by gi.

Dgeo(g1, g2) = ω1EA(g1, g2) + ω2EF (g1, g2)

where EA(g1, g2) and EF (g1, g2) measure the affine trans-

formation and TPS bending, and ω1 and ω2 can be assigned

empirically (ω1 = 0.08, ω2 = 0.92).

From these clusters we can further select which graphlets

are the most informative for each category. In our imple-

mentation, the detectability of each graphlet g can be mea-

sured based on the mutual information between it and one

given category c.

MI(g ∈ G, c ∈ C) = p(g, c) log
p(g, c)

p(g)p(c)

where p(g) denotes the graphlet’s frequency in one cate-

gory, p(c) denotes the category frequency, and p(g, c) de-

notes the joint probability of occurrence of the graphlet and

Detectable Graphlet

Y- axis : frequency
X- axis : each graphlet

airplane bicycle bucket

front view chair couch cup

gramophone microwave onen

floor lamp laptop monitor

side view car

8. Loop

9. Rectangle

 12. U-Junction

2. Star

1. Cross

14. Arrow

 5. Y-Junction

 6. T-Junction

3. L-Junction

7. Parallel

 4. Colinear

13. Trapezia

 10. A- Angle

11. O- Angle

Figure 6. The graphlet distributions in 12 categories for illustra-

tion. The graphlets are listed in order according to detectability.

category. According to the average mutual information in

all categories, we select the top 14 detectable graphlets,

shown in Fig.5 along with examples of raw image patches

they arise in. The distributions of each of these 14 graphlets

over 15 categories are shown in Fig.6.

3.2. Computing the Sketch Graph

To compare our target image to our training data, we

must also convert it into a sketch representation. To com-

pute a sketch graph G from a testing image I , we first com-

pute an edge probability map using a learning-based BEL

detector[12], which incorporates approximately 50000 low-

level features. A few representative examples of BEL de-

tection results are shown in Fig.7 (b), where darker pixels

denote higher probability of an edge. The primal sketch

algorithm[3] is then run on the edge probability map to ob-

tain a sketch graph S (Fig. Fig.7 (c)). S is an attributed

graph and can reconstruct the original image using a dictio-

nary �SK of small image patches for edges and texture in

the remaining areas. The sketch graph can be decomposed

into graphlets according to the learned graphlet dictionary.

S = ∪N
i=1gi ∪ g0

where g0 is the remaining line segments in S.

A compositional boosting[21] algorithm is then utilized

for graphlet detection, and the sketch graph G is decom-

posed into a number of graphlets. A few typical results of

computed sketch graphs with their underlying graphlets are

shown in Fig.7 (d).

3.3. Sequential Test Pruning

We collected 800 raw images at multiple scales from

33 categories to be used as testing images from the Lo-

tus Hill Institute’s image database [2]. These were con-

verted to sketch graphs, as described above, comprising

(a) Raw image (b) Probability Map (c) Primal Sketch (d) Graphlet detection

Figure 7. The sketch graphs computed from raw images. (a) Raw

images. (b) Edge probability maps by BEL detector[12]. (c) Pri-

mal sketch results by [3]. (d) Refined sketch graphs with graphlet

detection (A few selected graphlets are shown in colors).

our test set Ωtest = {T1, T2, . . . , TN}). We also selected

between 30 and 50 annotated objects to learn the And-

Or graph from, which then generated 30 new samples in

sketch representation for each category. A combination

of raw and synthesized data formed the full training set

Ωtrain = {G1, G2, . . . , GN} of 1980 (60×33) objects over

33 categories.

For each Ti ∈ Ωtest, we search over windows at multi-

ple scales and locations Wi = {wi1, wi2, . . . , wim} to rec-

ognize objects from our 33 categories. Our goal is to find

the sketch graph G∗ ∈ Ωtrain that best matches each win-

dow wij , if any. While our graph matching algorithm [10]

is powerful for matching one graph to another, even under

large deformations, it is far too inefficient to exhaustively

match each training instance to wij . We thus use our set

of sequential tests to map the training set into increasingly

complex spaces, keeping only the best matching subset of

Ωtest at each stage for the next test.

Ωtest ⊇ Ω1 ⊇ Ω2 ⊇ Ω3 ⊇ Ω4 = Ωc

where each Ωi is a new test space and Ωc is the final can-

didate set we use for graph matching. The best matching

G∗ ∈ Ωc is selected as our final match.

The number N of candidates we keep at each stage is

empirically determined as the minimum subset that pro-

duces 100% true positives. This ensures we never discard

possible matches, yet likely reduces our candidate set size.

We also plot a confusion matrix of the top N candidate cat-

egories at each stage, which describes whether the true cat-

egory is in the top N candidate categories. From step 3 on,

we not only prune categories, but also candidate templates

from each category.

For ease in later notation, let us define the sketch graph

within our window of interest wij ∈ Wi, Ti ∈ Ωtest as

G′. Each training sketch graph will be represented as Gk ∈
Ωtrain, and any graph G is comprised of a set of graphlets

Γ(G) = {g1, g2, . . . , gn(g)}.

Step 1 Category histogram At this stage, the frequen-

cies of graphlets in G′ and each template graph Gk are

pooled over each category Ci to be used as our data points

Hi.

Hi(z) =

∑
j∈Ci

∑n(Γ(Gj))
k=1 1(gk == z)

∑
j∈Ci

∑n(Γ(Gj))
k=1 1

The likelihood between H(G′) and each H(Gk) is then cal-

culated, and the top N candidates are selected to keep the

true positive rate at 100%. In our experiments, 15 categories

remained, the results of which are shown in Fig. 8 (a). The

training instances from these 15 categories are carried to the

next stage as Ω1.

Step 2 Nearest Neighbor of Single Graphlet We next

convert each G ∈ Ω1 and G′ into a sparse vector Vj of

graphlet weights. Each vector represents the frequency of

each graphlet along with its weight(detectability) ωi, com-

puted when we first formed the dictionary. Suppose we have

M training templates in each remaining category, then each

vector is

Vi = {C(gi
1), . . . , C(gi

n(g))} = {ω1N
i
1, . . . , ωkN i

n(g)}
where Nk denotes frequency of each graphlet.

Then we use a parameterizing Hamming distance as our

nearest neighbor metric for classification.

Hamming(Vi, Vj) =
n(g)∑

k=1

|ωi
kN i

k − ωj
kN j

k |

We first calculate the distance between our testing in-

stance and each training instance from the 15 candidate cat-

egories kept from step 1. We then find the 20 shortest dis-

Top1 Top5 Top15 (15)

27.6% 80.6% 100%

36.7% 76.0%

Top1 Top4 Top8 (8)

100%

(a)Step1

43.3% 79.1% 100%

Top1 Top3 Top5 (5)

(c)Step3

(b)Step2

58.2% 75.2% 92.4%

Top1 Top2 Top3 (3)

(d)Step4

Predicted Category Predicted Category Predicted Category

Predicted Category Predicted Category Predicted Category

Predicted Category Predicted Category Predicted Category

Predicted Category Predicted Category Predicted Category

C
or

re
ct

 C
at

eg
or

y

C
or

re
ct

 C
at

eg
or

y

C
or

re
ct

 C
at

eg
or

y

C
or

re
ct

 C
at

eg
or

y

C
or

re
ct

 C
at

eg
or

y

C
or

re
ct

 C
at

eg
or

y

C
or

re
ct

 C
at

eg
or

y

C
or

re
ct

 C
at

eg
or

y

C
or

re
ct

 C
at

eg
or

y

C
or

re
ct

 C
at

eg
or

y

C
or

re
ct

 C
at

eg
or

y

C
or

re
ct

 C
at

eg
or

y

Figure 8. Four steps of cascaded prune. For each step, three

confusion matrix show results with the top N candidate cate-

gories, and candidate templates are also pruned for next step. The

ωi{i = 1...4} denotes the pruned templates space.

tances within each category and calculate the average dis-

tance between them. We keep the N closest candidate cate-

gories for step 3 as Ω2, which in our experiments consisted

of 8 categories with 30 candidate templates in each cate-

gory. The results of step 2 are shown in Fig. 8 (b).

Step 3 Nearest Neighborhood via Graphlet Pairs We

next introduce spatial information into our features. To

capture spatial information in the sketch graph, adjacent

graphlets in each G are composed into pairs of graphlets.

From these pairs a dictionary of composite graphlets can be

learned as in Section 3.1, and the top 20 detectable compos-

ite graphlets are shown in Fig. 9. We then vectorize each

G just as in step 2, but using these graphlet pairs instead

of single graphlets. The distance metric used is again Ham-

ming distance. In this stage, however, we not only prune the

candidate sets, we also prune candidate graphs from each of

the top N candidate sets. We keep the top 5 candidate cat-

egories and top 15 candidate templates from each of the 3
categories to comprise Ω3. Results from this step are shown

airplane bicycle bucket

front view chair couch cup

gramophone microwave onen

floor lamp laptop monitor

side view car

Pair of Graphlets

Y- axis : frequency
X- axis : each compositional graphlet

20. PI-Junction

14. Double-L 1

10. Double-L 2

15. Double-L 3

18. T-L

17. T-T

 13. T-Y

16. T-Arrow

19. T-Colinear

8. T-Cross

4. Y-L

9. Y-Y

3. Y-Arrow

11. Y-Colinear

7. Y-Cross

1. Arrow-L

 2. Arrow-Arrow

6. Arrow-Cross

5. Cross-Cross

12. Arrow-Colinear

Figure 9. Top 20 detectable composite graphlets and their distri-

butions of selected 16 categories.

in 8 (c).

Step 4 Nearest Neighborhood via Shape Context We

next incorporate additional spatial information into each G
by modeling it using Shape Context[20]. The points com-

prising each G are used as the input to the algorithm, and

matching each possible Gk to G′ returns a warping energy.

This energy is our distance metric, and we keep the 3 cat-

egories with lowest average energy, and 8 candidate tem-

plates within those categories with lowest energy, forming

our final candidate set Ω4. Results are shown in Fig. 8 (d).

Step 5 Top-down verification with Graph Matching
Given the pruned set Ωc from our sequential tests, we can

now perform the last stage of recognition, top-down graph

matching. The matching algorithm we adopt is a stochas-

tic layered graph matching algorithm with topology edit-

ing that tolerates geometric deformations and some struc-

tural differences [10]. Following [10], we can use the un-

derlying graphlets from each G as the initial seed graphs,

which greatly improve the matching accuracy and effi-

ciency. Some final candidate categories are shown in Fig. 10

and top-down matching is illustrated. The input testing

graph matches to candidate templates and 6 selected match-

ing instances are shown in Fig. 10.

The final confusion matrix on 800 testing images is

shown in Fig. 11,

3.4. Analysis and Comparison

The results in the previous section prove that we can both

reduce the size of our sample set at every stage, yet keep

classification rate high. As the confusion matrices at each

step show, the diagonal is darkened as we keep more and

more categories, as expected. In addition, at each step, the

off-diagonal elements get lighter. Thus we are keeping a

high true positive rate, while diminishing our false positive

Match energy: 0.181

Match energy: 0.287Match energy: 0.318

Match energy: 0.147Match energy: 0.256

Match energy: 0.174

Figure 10. The top-down graph matching verification. Each testing

graph matches with the candidate templates, and obtain the best

candidate with lowest matching energy.

Predicted Category

C
or

re
ct

 C
at

eg
or

y

Figure 11. The final confusion matrix on 800 testing images.

step1 step2 step3 step4 final

with

generalized 27.6% 36.7% 43.8% 59.2% 81.4%

samples

without

generalized 21.5% 27.4% 39.5% 42.3% 66.2%

samples

Table 1. Results of classification rate in each step with general-

ized samples and without generalized samples. In each step, the

classification rate is calculated by cascaded pruning.

rate.

The top-down graph matching results show that we can

identify objects even if they are slightly dissimilar from our

candidate matches. The flexibility of this algorithm lets us

identify objects that have undergone slight pose or appear-

ance changes. Note that the power of this match relies on

us having a representative set of candidates with different

appearances and poses to match with, which were created

via the And-Or graph. The combination of these two algo-

rithms, along with the set of sequential tests, is what allows

us to recognize objects with highly varied appearances.

Table 1 shows the importance and benefit of using syn-

thesized samples to augment our training set. We ran the

algorithm using both a set of original data plus synthesized

samples as well as with a sample set of just hand-collected

data (without generalized samples). In this experiment, we

did not prune in the final stage to ensure 100% true positive

rate. Thus, to get the classification rate for step 3, we pruned

in steps 1 and 2, then measured the classification accuracy

of labeling using step 3. The top row, representing the re-

sults for the hand-collected data, shows markedly worse

performance than the bottom row, which includes synthe-

sized instances. This is evidence that synthesized samples

better cover the appearance space and produce better recog-

nition and classification results.

To show the usefulness of this algorithm with small sam-

ple sets, we compare our performance to another classifica-

tion framework, PBT[22]. As the number of training sam-

ples increases, the PBT performs well in learning a discrim-

inative model while keeping the hierarchical tree structure,

in which each node combines a number of weak classifiers

(evidence, knowledge) into a strong classifier (a conditional

posterior probability). However, like typical discriminative

approaches, the number of training data it needs exponen-

tially increases for the multi-class classification task. As the

red curve shows in Fig.12, PBT shows poor classification

results for small sets of training images (from 10 to 60 for

each category). As illustrated in Fig.12, our framework on

synthesized templates appears to have better classification

power than the PBT framework.

The results above show that And-Or graph models,

learned from annotated parsing graphs, have greater ability

to capture object category variability, and the synthesized

objects from those And-Or graph models thus are more

representative than just the original data alone. Addition-

ally, combining the And-Or graph model with the sequential

prune is indeed an effective approach for multi-class clas-

sification task on small sets of original training data, out-

performing discriminative methods that often rely on large

amounts of data to work effectively.

4. Summary
In this paper, an empirical study of a system composed of

a compositional object model, a sequential testing scheme,

and a top-down matching method for object classification

and recognition was presented. We exhibited the And-

Or graph model’s ability to span the object configuration

space and showed a method to compute sketch graphs us-

ing graphlets detection. In the inference process, four stages

of sequential pruning were adopted to narrow down possi-

ble matches for a target image, and a graph matching al-

gorithm was used on the final candidates for verification.

We showed how our classification rate varied as the number

of synthesized samples increased, and showed its improve-

Figure 12. Classification rate with the training data increasing. We

use synthesized templates as training data for our framework, and

use collecting images as training data for PBT framework. The

red curve denotes the performance of PBT, while green denotes

our approach.

ment over PBT[22]. The experimental results and compar-

isons show that the use of synthesized instances allows us to

better represent objects with large variability in appearance,

and that our bottom-up discriminative prune combined with

top-down matching is an efficient and accurate way to per-

form classification and recognition.

Acknowledgement

This work is done at the Lotus Hill Institute and is sup-

ported by China 863 program (Grant No.2006AA01Z339

and No.2006AA01Z121), NSFC (Grant No.60673198),

NSF (Grant No.0413214 and No.0713652), and ONR

(Grant No.00014-05-0543). The data used in this paper

were provided by the Lotus Hill Annotation project[2],

which was partially supported by a subaward from the W.M.

Keck Foundation. The author would like to thank Zhuowen

Tu for providing PBT and BEL codes, and thank Zhuowen

Tu and Zijian Xu for extensive discussion.

References
[1] J. Porway, B. Yao, and S.C. Zhu, Learning An And-Or graph

for Modeling and Recognizing Object Categories, Technical

Report, Department of Statistics, UCLA, 2007. 2

[2] B. Yao, X. Yang, and S.C. Zhu. Introduction to A Large Scale

General Purpose Groundtruth Dataset: Methodology, Anno-

tation tool, and Benchmarks, EMMCVPR, 2007. 2, 4, 8

[3] C. E. Guo, S. C. Zhu, and Y. N. Wu. A Mathematical Theory

of Primal Sketch and Sketchability, ICCV, 2003. 4, 5

[4] D. Crandall, P. Felzenszwalb, and D. Huttenlocher. Spatial

Priors for Part-Based Recognition Using Statistical Models,

CVPR, 2005. 2

[5] F. Han and S.C. Zhu. Bottom-up/Top-down Image Parsing

by Attribute Graph Grammar, ICCV, 2005. 2

[6] F. Jurie and B. Triggs. Creating Efficient Codebooks for Vi-

sual Recognition, ICCV, 2005. 2

[7] I. Ulusoy, C. Bishop. Generative Versus Discriminative

Methods for Object Recognition, CVPR, 2005. 2

[8] L. Fei-Fei and P. Perona. A Bayesian Hierarchical Model for

Learning Natural Scene Categories, CVPR, 2005 2

[9] H. Chen, Z. Xu, Z. Liu, and S.C. Zhu. Composite Templates

for Cloth Modeling and Sketching, CVPR, 2006. 2

[10] L. Lin, S.C. Zhu, and Y. Wang. Layered Graph Match with

Graph Editing, CVPR, 2007. 2, 5, 6

[11] M. P. Kumar, P. H. S. Torr, and A. Zisserman, Extending

Pictorial Structures for Object Recognition, BMVC, 2004.

[12] P. Dollar, Z. Tu, and S. Belongie. Supervised Learning of

Edges and Object Boundaries, ICCV, 2005. 4, 5

[13] P. Felzenszwalb and D. Hut tenlocher. Pictorial Structures for

Object Recognition, IJCV 61(1):55-79, 2005. 2

[14] P. Viola and M. Jones. Rapid Object Detection Using a

Boosted Cascade of Simple Features, CVPR, 2001. 2

[15] R. Fergus, P. Perona, and A. Zisserman. Object Class Recog-

nition by Unsupervised Scale-invariant Learning, CVPR,

2003. 2

[16] R. Maree, P. Geurts, J. Piater, L. Wehenkel. Random Sub-

windows for Robust Image Classification, CVPR, 2005. 2

[17] S. Ali and M. Shah. An Integrated Approach for Generic

Object Detection Using Kernel PCA and Boosting, ICME,

2005. 2

[18] S.C. Zhu and D. Mumford. A Stochastic Grammar of Im-

ages, Foundations and Trends in Computer Graphics and Vi-

sion, 2007(To appear). 2

[19] S. Ullman, E. Sali, and M. Vidal-Naquet. A Fragment-Based

Approach to Object Representation and Classification, Proc.

4th Intl Workshop on Visual Form, Capri, Italy, 2001. 2

[20] S. Belongie, J. Malik, and J. Puzicha. Shape Match-

ing and Object Recognition Using Shape Contexts. PAMI,

24(4):509-522, 2002. 2, 6

[21] T.F. Wu, G.S. Xia, and S.C. Zhu. Compositional Boosting

for Computing Hierarchical Image Structures, CVPR, 2007.

4

[22] Z. Tu: Probabilistic Boosting Tree. Learning Discrimina-

tive Models for Classification, Recognition, and Clustering,

ICCV, 2005. 2, 7, 8

