
4766 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

Bit-Scalable Deep Hashing With Regularized
Similarity Learning for Image Retrieval

and Person Re-Identification
Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo, and Lei Zhang

Abstract— Extracting informative image features and learning
effective approximate hashing functions are two crucial steps in
image retrieval. Conventional methods often study these two steps
separately, e.g., learning hash functions from a predefined
hand-crafted feature space. Meanwhile, the bit lengths of output
hashing codes are preset in the most previous methods, neglecting
the significance level of different bits and restricting their prac-
tical flexibility. To address these issues, we propose a supervised
learning framework to generate compact and bit-scalable hashing
codes directly from raw images. We pose hashing learning as
a problem of regularized similarity learning. In particular, we
organize the training images into a batch of triplet samples,
each sample containing two images with the same label and one
with a different label. With these triplet samples, we maximize
the margin between the matched pairs and the mismatched
pairs in the Hamming space. In addition, a regularization term
is introduced to enforce the adjacency consistency, i.e., images
of similar appearances should have similar codes. The deep
convolutional neural network is utilized to train the model in
an end-to-end fashion, where discriminative image features and
hash functions are simultaneously optimized. Furthermore, each
bit of our hashing codes is unequally weighted, so that we can
manipulate the code lengths by truncating the insignificant bits.
Our framework outperforms state-of-the-arts on public bench-
marks of similar image search and also achieves promising results
in the application of person re-identification in surveillance. It is
also shown that the generated bit-scalable hashing codes well
preserve the discriminative powers with shorter code lengths.

Index Terms— Image retrieval, hashing learning, similarity
comparison, deep model, person re-identification.

Manuscript received February 18, 2015; revised June 24, 2015; accepted
August 1, 2015. Date of publication August 11, 2015; date of current version
September 18, 2015. This work was supported in part by the Hong Kong
Scholar Program, in part by the Guangdong Natural Science Foundation
under Grant S2013050014548 and Grant 2014A030313201, and in part by the
Program of Guangzhou Zhujiang Star of Science and Technology under
Grant 2013J2200067. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Kiyoharu Aizawa.
(Corresponding author: Liang Lin.)

R. Zhang and R. Zhang are with Sun Yat-sen University,
Guangzhou 510006, China (e-mail: r.m.zhang1989@gmail.com; rayz0620@
gmail.com).

L. Lin is with Sun Yat-sen University, Guangzhou 510006, China, and also
with the Department of Computing, The Hong Kong Polytechnic University,
Hong Kong (e-mail: linliang@ieee.org).

W. Zuo is with the School of Computer Science and Technology,
Harbin Institute of Technology, Harbin 150001, China (e-mail:

ZHANG et al.: BIT-SCALABLE DEEP HASHING WITH REGULARIZED SIMILARITY LEARNING 4767

Fig. 1. Illustration of the triplet-based regularized similarity learning.
A batch of triplet samples (represented by the solid eclipses) are organized.
Each triplet contains three images (represented by dots with different shapes)
with only two of them having the same label. The margin between the matched
pairs and the mismatched pairs are maximized in the Hamming space, while
regularization (indicated by the gray dashed circle) is incorporated to constrain
the images of similar appearances to have similar hashing codes.

A novel supervised Bit-Scalable Deep Hashing
framework1 is proposed in this work to address the
above mentioned issues, and we validate its effectiveness
on the tasks of general image retrieval and person
re-identification across disjoint camera views. The convolu-
tional neural network (CNN) is utilized to build the end-to-end
relation between the raw image data and the binary hashing
codes for fast indexing. Moreover, each bit of these output
hashing codes is weighted according to their significance
so that we can manipulate the code lengths by truncating
the insignificant bits. The hashing codes of arbitrary lengths
(less than the original codes) can then be easily obtained
without extra computation. In the following, we overview
the main components of our framework and summarize the
advantages.

(I). We present a novel formulation of relative similarity
comparison based on the triplet-based model. As discussed
in [2], [10], and [16], the triplet-like samples can well capture
the intra-class and inter-class variations in the ranking opti-
mization. In hashing learning, however, the images of similar
appearances are also expected to have close hashing codes in
the Hamming space. Therefore, we extend the triplet-based
relative comparison by incorporating a regularization term,
partially motivated by the recently proposed Laplacian Sparse
Coding [17]. Fig. 1 illustrates our formulation. Specifically,
we organize training images into a large number of triplet
samples, and each sample contains three images with only
two of them having the same label. Then, for each triplet
sample, we formulate the hashing learning as a joint task of
maximizing the relative distance between the matched pair and
the mismatched pair, while preserving the adjacency relation
of images in the Hamming space.

(II). We adopt the deep CNN architecture to extract the
discriminative features from the input images, where the
convolutional layers, max-pooling operators, and one full
connection layer are stacked up. Over the features generated
by previous layers, we impose one fully-connected layer and
one tanh-like layer to output the binary hashing codes. On the
top of our model, an element-wise layer is designed to weigh

1Source code available at: http://vision.sysu.edu.cn/projects/DeepHashing/

each bin of the hashing codes for bit-scalable hashing. In our
deep model, the hash function learning and the feature learning
are jointly optimized via backward propagation. Moreover, the
generated bit-scalable hash codes are able to well preserve the
matching accuracy with varying code lengths.

(III). To cope with the large amount of stored images, we
implement our learning algorithm in a batch-process fashion.
In each round of learning, we first organize the triplet
samples from a randomly selected subset (i.e., 150 � 200)
of the training images, and then utilize the stochastic gradient
descent (SGD) method for parameter learning. Since one
image can be included in several triplet samples, we calculate
the partial derivative on images instead of on triplet samples.
The computational cost is thus much reduced and it is linear
to the selected subset of images.

This paper makes three main contributions to image
retrieval. i) First, it unifies feature learning and hash function
learning via deep neural networks, and the proposed
bit-scalable hashing learning can effectively improves the
flexibility of image retrieval. ii) Second, it presents a novel
formulation (i.e., the regularized triplet-based comparison)
for hashing learning, and it is general to be extended to
other similar tasks. iii) Third, our extensive experiments on
standard benchmarks demonstrate that the learned hashing
codes well preserve the instance-level similarity and outper-
forms state-of-the-art hashing learning approaches. Moreover,
we successfully apply our hashing method to the applica-
tion of person re-identification in surveillance. This task,
aiming at retrieving the same individual across several non-
overlapped cameras, has received increasingly attention in
computer vision research.

The rest of the paper is organized as follows. Section II
presents a brief review of related work. Section III
introduces our hashing learning framework, followed by a dis-
cussion of learning algorithm in Section IV. The experimental
results, comparisons and component analysis are presented
in Section V. Section VI concludes the paper.

II. RELATED WORK

Recently, hashing is becoming an important technique
for fast approximate similarity search. Generally speaking,
hashing methods can be categorized into two classes:
data-independent and data-dependent. Data-independent
methods randomly generate a set of hash functions without
any training, and they usually make the hashing codes
scattered to keep the matching accuracy [18]. Exemplars
include Locality Sensitive Hashing [19] and its variants [20],
and the Min-Hash algorithms [21].

On the other hand, data-dependent hashing methods focus
on how to learn compact hashing codes from the training data.
These learning-based approaches usually comprise two stages:
i) projecting the high dimensional features onto the lower
dimensional space, and ii) quantizing the generated real-valued
representations into binary codes. Specifically, unsupervised
methods learn the hash functions using unlabeled data, which
seek to propagate neighborhood relation of samples from a
certain metric space into the Hamming space [13], [22]–[25].
For example, Spectral Hashing [13] constructs the global graph

4768 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

Fig. 2. The bit-scalable deep hashing learning framework. The bottom panel shows the deep architecture of neural network that produces the hashing code
with the weight matrix by taking raw images as inputs. The training stage is illustrated in the left up panel, where we train the network with triplet-based
similarity learning. An example of hashing retrieval is presented in the right up panel, where the similarity is measured by the Hamming affinity.

with L2 distance and optimizes the graph Laplacian cost
function in the Hamming space. Locally Linear Hash [25]
pursues the structures of manifolds in the Hamming space
and optimizes such structures by locality-sensitive sparse
coding. For the semi-supervised [26], [27] and supervised
methods [5], [7], [12], [28], [29], richer similarity informa-
tion of training samples (e.g., pairwise similarity or relative
distance comparison [29]) is exploited to improve the hashing
learning. For example, Wang et al. [27] proposed a semi-
supervised hashing framework, which minimizes the empirical
error on the labeled data while maximizing the variance over
labeled and unlabeled data simultaneously. Norouzi et al.
introduced the Minimal Loss Hashing [12] based on structured
prediction with latent variables and a hinge-like loss function.
Following [12], Huang et al. proposed the Online Hashing [28]
to update the hash function incrementally. Column Generation
Hashing [5] aims to learn hash function based on proximity
comparison information and preserve the data relationship
based on large-margin principle. In [29], Norouzi et al. also
employed triplet-based model with loss-augmented inference
and showed very good results in image retrieval and
classification. However, in each iteration, the time cost of such
structured prediction method heavily depends on the scale of
data and the length of hash code. Liu et al. proposed the
Kernel-based Supervised Hashing [7], in which the non-linear
kernel was utilized with triplet-based hash function learning.

Rather than using hand-crafted representations [30],
extracting features and capturing contextual relations with
deep learning techniques have shown great potential in var-
ious vision recognition tasks such as image classification
and object detection [31]–[35]. Very recently, Wu et al. [2]
proposed a learning-to-rank framework based on multi-scale

neural networks, and showed promising performance on
capturing fine-grained image similarity. Pre-training on the
large-scale image classification database (i.e., ImageNet [31])
was used in this model. Another related work was proposed
by Xia et al. [36], which utilizes CNN for supervised hashing
learning. They first produced the hashing codes of images by
decomposing the pairwise similarity matrix, and then learned
the mapping functions from images to the codes. This method,
however, may fail to deal with large-scale data due to the
matrix decomposition operation. Our approach proposed in
this paper advances the above methods in the novel regu-
larized triplet-based formulation and the bit-scalable hashing
generation.

III. BIT-SCALABLE DEEP HASHING FRAMEWORK

The objective of hashing learning is to seek the mapping
function h(x) that projects p-dimensional real valued feature
vector x � R p onto q-dimensional binary hash code
h � {Š 1, 1}q , while preserving semantic consistency of each
pair. In this section we introduce our bit-scalabe deep hashing
framework, which is illustrated in Fig. 2. Instead of learning
hash function on hand-crafted feature space, we integrate
image feature learning and hashing learning into a nonlinear
transformation function �(·) taking the raw image as input.
In addition, we introduce a weight vector w = [w1, . . . , wq]T

to weigh each bit of the output hash codes, which represents
the significance of each bit in measuring similarity. In our
framework, a deep architecture of CNNs is developed to jointly
learn �(·) and w.

We express the nonlinear hash function as a parametric
form:

h = sign(�(I)) (1)

ZHANG et al.: BIT-SCALABLE DEEP HASHING WITH REGULARIZED SIMILARITY LEARNING 4769

where sign(·) denotes the element wise sign function, I is a
raw image. Different from our model, many state-of-the-art
methods are designed to learn a hash function sign(AT x)
of linear projection AT x , where x is a hand-crafted feature
representation. With the weight w, we employ the weighted
Hamming affinity [14] to measure the dissimilarity between
two hashing codes, which is expressed as a linear combination
of the agreement between the two codes:

H(h(x j), h(xk)) = h(x j)�wh(xk) = Š
�

i

w2
i hi (x j)hi (xk)

(2)

where �w is the diagonal matrix whose diagonal value is
represented as �w(i, i) = w2

i .
The weighted hash code brings several distinctive advan-

tages in hash learning. (i) Instead of treating each bit equally,
we can produce more effective hashing code by assigning
different weights to different bits. (ii) By truncating the
insignificant bins corresponding to small weights, we can
flexibly manipulate the code lengths for different scenarios
(e.g., adapting to computational resources). (iii) The weighted
Hamming distance can be naturally degenerated into the
conventional version.

A. Formulation

We organize the training images into triplet samples, and
pose the hashing learning problem as a problem of regularized
similarity learning. Each triplet contains three images with
only two of them having the same label and the other one
having a different label. We define a Max-Margin term embed-
ded in the Hamming space to maximize the margin between
the matched pairs and the mismatched pairs, which is similar
to the fine-grained image similarity model in [2]. Intuitively,
this term guarantees the learned hashing codes to preserve
the ranking orders of images according to the annotated
semantics.

Let D = { (Ii , I +
i , I Š

i)}N
i= 1 be a set of triplet units, in which

Ii and I +
i are two images having the same label, Ii and I Š

i are
two mismatched images, and N is the total number of training
triplets. Let � denote the parameters of hashing functions and
h(Ii) � {Š 1, 1}q denote the q bits hashing code of image Ii .
For simplicity, we use hi to replace h(Ii), and use h+

i and hŠ
i

to denote h(I +
i) and h(I Š

i), respectively. With the triplet-based
samples, the loss function of the Max-Margin term can be
written as:

min
�

i,i+ ,iŠ

� w(hi , h+
i , hŠ

i) (3)

where � w(·, ·, ·) is the max-margin loss defined for one triplet.
We require that the weighted Hamming affinity should satisfy
the following constraint:

H(hi , h+
i) < H(hi , hŠ

i) (4)

Then, we have the following hinge-like loss function:

�

i,i+ ,iŠ

� w(hi , h+
i , hŠ

i) =
N�

i= 1

max{Gw(hi , h+
i , hŠ

i), C} (5)

where G(hi , h+
i , hŠ

i) = H(hi , h+
i) Š H(hi , hŠ

i), and H(·, ·)
is defined in Eq. (2). The max operator and constant C are
introduced to enhance the robustness again outliers, as defined
in SVMs. We set C = Š q/ 2 throughout the experiments.

In addition to preserving the image ranking, we also encour-
age the adjacency relation of images in the original appearance
space to be stressed with the learned hashing codes. Thus, we
define the following regularization term:

�

i, j

� w(hi , h j) =
1

2

�

i j

H(hi , h j)Si j (6)

where Si j represents the similarity between an image pair
(Ii , I j) over the training set. As introduced in [17], Si j is
large when two images are similar and small when they
are dissimilar. The way of specifying Si j will be discussed
in Sec. V. Following [17], we define the diagonal degree
matrix U with Uii =

�
j Si j . The Laplacian matrix [37] can

then be defined as L = U Š S [17], and we can rewrite the
regularization term Eq. (6) into the following form:

�

i, j

� w(hi , h j) =
1

2
tr(H L H T) (7)

where H = [h1�w
1
2 , h2�w

1
2 , ..., hM �w

1
2] and M is the total

number of images utilized to generate D, and tr(·) denotes
the trace operator.

By combining Eq.(5) and Eq.(7), we have the following
regularized triplet-based comparison model:

min
w,�

N�

t= 1

max{Gw(hi , h+
i , hŠ

i), C} + � tr(H L H T) (8)

Since the hash codes are binary, the above objective is
discontinuous and nondifferentiable and thus is difficult to
be optimized via gradient descent. To address this problem,
we propose a tanh-like approximation o(v) of the sign
function:

o(v) =
1 Š eŠ�v

1 + eŠ�v (9)

where � is a tuning parameter to control the smoothness. When
� = 2, Eq. (9) is a standard hyperbolic tangent function. When
� is very large, the activation function in Eq. (9) approximates
to a sign function. In this paper, � is increasing from 2 to 1000
in the iterations of learning. In the test stage, the sign function
is adopted as the activation function to obtain the discrete hash
code.

With o(v), the hash code hi can be approximated
by ri � [Š 1, 1]q:

r = o(�(I)) (10)

We further define Dw(ri , r+
i , rŠ

i) to approximate
Gw(hi , h+

i , hŠ
i) as follows

Dw(ri , r+
i , rŠ

i) = M (ri , r+
i) Š M (ri , rŠ

i) (11)

where M (·, ·) is the weighted Euclidean distance between the
approximated hash codes:

M (ri , r j) = � ri �w
1
2 Š r j �w

1
2 � 2

2 (12)

4770 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

Finally, the continuous approximation of the regularized
triplet-based learning model is written as:

min
w,�

N�

i= 1

max{Dw(ri , r+
i , rŠ

i), C} + � tr(RL RT) (13)

where R = [r1�w
1
2 , r2�w

1
2 , ..., rM �w

1
2].

An obvious advantage of binary hashing is that bit-wise
XOR or lookup table can be adopted to measure the dis-
tances between hash codes. Even the proposed weighted hash
makes it impossible to use this efficient searching strategy, we
develop a lookup table (LUT) based approach to rapidly return
the weighted affinity between hash codes. For simplicity,
let l denotes the length of hash code. We can set up a lookup
table with the length 2l , which equals to the total number of
candidate XOR results between two hash codes. Because the
hash weights are pre-trained and fixed in the searching stage,
the weighted hamming affinity of each XOR result can be
calculated in advance and stored in the lookup table as the
item. In this way, the ranking list can be efficiently returned
by the table lookup search. Although this method provides a
feasible solution for the efficient searching, the storage of the
table is exploding as l becomes large. A reasonable strategy
to handle this point is to split the hash code into different
parts with equal length (set as 8 in this paper). Each part
is associated with a special sub-table with fixed length. The
output of each sub-table is the weighted similarity value of the
corresponding part. The overall hash affinity can be calculated
by accumulating the weighted similarity values from all parts,
and then the final ranking list is generated based on the overall
hash affinity.

B. Deep Architecture
In order to incorporate the feature representation

learning and binary hash code learning into an end-to-end
learning framework, we introduce the deep CNN into our
hash learning process. Fig. 2 shows the overall network
architecture, which consists of ten layers. The first six layers
form the convolution-pooling network with rectified linear
activation and average pooling operation. We use 32, 64,
and 128 filters with size 5 × 5 in the first, second and
third convolutional layers and the stride is 2 pixels in every
convolution layer. The stride for pooling is 1 and we set the
pooling operator size as 2 × 2. The last four layers include
two standard fully connected layers, a tangent like layer to
output hash codes, and an element-wise connected layer to
weigh each bit of hash code. The number of units is 512 in
the first fully-connected layer and the output of the second
fully-connected layer equals to the length of hash code. The
activation function of the second fully-connected layer is
the tanh-like function defined in Eq. (9), and rectified linear
activation function is adopted for the other layers.

IV. LEARNING ALGORITHM

In this section, we present how to optimize the network
parameters given a set of training images and a fixed number
of triplets. The implementation details about generating triplets
from labeled images and training the network with batch mode
are also presented at the end of this section.

A. Joint Optimization

Let’s first consider the learning algorithm with the loss
function defined in Eq.(13). The parameter optimization of
varied length hashing learning is the same. For simplicity, we
consider the parameters in the network as a whole and define
� = [�, w]. Thus, the loss function can be expressed as:

L(�) =
N�

i= 1

max{Dw(ri , r+
i , rŠ

i), C} + � tr(RL RT) (14)

In order to employ back propagation algorithm to optimize
the network parameters, we compute the partial derivative of
the objective function:

	 L
	� k

=
N�

i= 1

dw(ri , r+
i , rŠ

i) + �
M�

j= 1

fw(r j) (15)

By the definition of Dw(ri , r+
i , rŠ

i) in Eq.(13), we obtain the
gradient as follows:

dw(ri , r+
i , rŠ

i) =

�
	 Dw(ri ,r

+
i ,rŠ

i)
	� k

, if Dw(ri , r+
i , rŠ

i) > C

0, if Dw(ri , r+
i , rŠ

i) � C

(16)

	 Dw(ri , r+
i , rŠ

i)

	 � k
= 2(ri �w

1
2 Š r+

i �w
1
2)

�
·

	(ri �w
1
2) Š 	(r+

i �w
1
2)

	 � k

Š 2(ri �w
1
2 Š rŠ

i �w
1
2)

�
·

	(ri �w
1
2)Š 	(rŠ

i �w
1
2)

	 � k
(17)

It is clear that the gradient of each triplet can be calculated

by the value of (r j �w
1
2) and

	(r j �w
1
2)

	� k
for a single image. Thus,

the gradient of the first term in Eq.(13) can be obtained by
the forward and backward propagation for each image in the
triplet.

On the other hand, we can rewrite the optimization of the
second term in Eq.(13) with respect to r j as follows:

tr(RL RT) = (r j �w
1
2)T (RL j) + (RL j)T (r j �w

1
2)

Š (r j �w
1
2)T Lii (r j �w

1
2) (18)

where L j is the j -th column of L. Following [17], we define
the matrix RŠ j as the submatrix formed by removing the
j -th column of matrix R, and define the vector L j,Š j as the
subvector after removing the j -th entry of vector L j . Then
f (r j) in Eq.(15) can be calculated by

fw(r j) = (RŠ j L j,Š j + L j j (r j �w
1
2)) ·

	(r j �w
1
2)

	 � k
(19)

We can observe that the gradient of the second term in

Eq.(13) can also be computed through (r j �w
1
2) and 	(r j �w

1
2)

	� k
.

Reviewing the discussions above, the overall process of joint
optimization is summarized as follows: (1) calculating (r j �w

1
2)

for a certain image I j by forward propagation; (2) calculat-

ing 	(r j �w
1
2)

	� k
by backward propagation; (3) calculating each

	 Dw(r j ,r
+
j ,rŠ

j)
	� k

corresponding to I j by Eq.(17); (4) summing

the gradient 	 L
	� k

according to Eq.(15).

ZHANG et al.: BIT-SCALABLE DEEP HASHING WITH REGULARIZED SIMILARITY LEARNING 4771

B. Acceleration

In the above discussed optimization, both the first and
second terms of loss function need to know (r j �w

1
2) and

	(r j �w
1
2)

	� k
to calculate the partial derivative. The only differ-

ence is that the first term needs to compute triplet based
gradient according to Eq.(17), but the second term does not.
Discovering this difference inspires us to look for a more
effective optimization algorithm which depends only on image
based gradient.

We observe that the overall gradient can in fact be obtained
from gradient calculated for each image separately. We first
consider the second term of Eq.(14), whose partial derivative
depends on a single image. In contrast, it is difficult to write
the first term of Eq.(14) directly as the sum of the cost on
images, which takes the following form:

L(�) =
1

N

N�

i= 1

J ((ri �w
1
2), (r+

i �w
1
2), (rŠ

i �w
1
2)) (20)

where N is the total number of triplets. Fortunately, because
the loss function for a specific triplet is defined by the
outputs of the images in this triplet, the total loss can also
be considered as follows:

L(�) = L ((r1�w
1
2), (r2�w

1
2), ...(r j �w

1
2), .., (rM �w

1
2)) (21)

where r j corresponds to the distinct image in some
triplets. M indicates the total number of images adopted
in triplet set D. The derivative rule gives us the following
equation:

	 L
	�

=
N�

i= 1

	 L

	(ri �w
1
2)

	(ri �w
1
2)

	 �
(22)

Eq.(22) is very similar to traditional image based partial
derivative. The only variation is the way in which the partial
differential is calculated with respect to the image outputs.
In the traditional image based loss function, this calculation
depends on only one image, whereas in the triplet-based loss
function, it depends on the outputs of all images in the triplets.
Algorithm 1 provides the sketch of our hashing learning
framework and Algorithm 2 presents how to compute the
partial differential with respect to the network output. Such an
image-based gradient calculation method effectively reduces
the computational cost, which is significant for handling large
scale data.

C. Batch Process Implementation

Suppose that the training images are annotated into
K categories and each category contains a number O of
images. We can thus obtain a maximum number K � O �
(OŠ 1)� (K Š 1)� O of triplet samples, which is cubically more
than the source images. Since the number of stored images
possibly reaches to millions in practice, it is hence expected
to avoid loading all the data at once. To this end, we implement
the model training in a batch-process fashion. Specifically,
in each round, only a small set of triplets is produced and
fed to the neural networks. However, randomly producing
triplets is infeasible, as it may lead to the fact that the image

Algorithm 1 Deep Hashing Learning

Algorithm 2 Image Based Partial Derivative

distribution over the triplets is scattered and any two triplets
have very small possibility sharing the same image. This fact
will make the valid training samples very few and further
degenerate the pairwise comparison optimization. To over-
come this issue, we present an efficient yet effective triplet
generation scheme, which involves the following steps in each
iteration. We first randomly choose �K semantic categories,
from which a number �O of images are randomly selected.
Then, for each selected image Ik , we construct a fixed number
of triplets, and in each triplet the image having different label
from Ik is randomly selected from the remaining categories.
In this way, the images distributed over the generated triplet
samples are relatively centralized, so that we can collect
more pairwise label information for learning. Moreover, since
the categories and images are selected randomly for each
iteration, this generation method will produce all possible

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChancery-MediumItalic
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

