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This paper illustrates a hierarchical generative model for representing and recognizing compositional ob-

ject categories with large intra-category variance. In this model, objects are broken into their constituent

parts and the variability of configurations and relationships between these parts are modeled by stochas-

tic attribute graph grammars, which are embedded in an And–Or graph for each compositional object

category. It combines the power of a stochastic context free grammar (SCFG) to express the variability

of part configurations, and a Markov random field (MRF) to represent the pictorial spatial relationships

between these parts. As a generative model, different object instances of a category can be realized as a

traversal through the And–Or graph to arrive at a valid configuration (like a valid sentence in language,

by analogy). The inference/recognition procedure is intimately tied to the structure of the model and

follows a probabilistic formulation consisting of bottom-up detection steps for the parts, which in turn

recursively activate the grammar rules for top-down verification and searches for missing parts. We

present experiments comparing our results to state of art methods and demonstrate the potential of our

proposed framework on compositional objects with cluttered backgrounds using training and testing data

from the public Lotus Hill and Caltech datasets.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

As a popular and central research topic in pattern recognition

and computer vision, object category recognition contains two key

aspects:

(1) How to represent object categories with common parts but a

large number of appearances.

(2) How to design effective algorithms for inference.

Although recent research has achieved impressive results for a few

specific object categories, such as faces [1,2], humans [3], texture-

rich scenes [4,5], and some objects with simple configurations [6–8],

recognizing and localizing compositional objects amidst cluttered

backgrounds are still a challenging task. This is due to the varied

appearances and complex structures of these objects. Compositional

object categories refer to objects which can be decomposed hier-

archically into constituent components, such as clocks, monitors,

bicycles, and many man-made functional categories. Though the
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number of components and their types in each object are limited,

they can create a huge number of combinations, and thus demon-

strate radical intra-category structural variance. Fig. 1(a) shows the

clock category, which is decomposed into the frame, hands and num-

bers. Arranging these components allows us to produce various clock

instance as shown in Fig. 1(b). A good representation should thus

have both flexible structure and rich visual appearance. In addition,

an effective inference algorithm should be compatible with the rep-

resentation as well. Addressing both of these issues, we focus on a

novel stochastic grammar model capable of representing composi-

tional object categories together with a recursive computing strategy

integrating bottom-up proposals and top-down verification.

1.1. Related works

In the vision literature, object recognition and representations

can be roughly divided into three categories of methods.

Appearance-based approaches achieve simple visual/image rep-

resentations based on the photometric properties of an individual

object or the object category. This field, which gained prominence in

the 1990s with holistic appearance models [9], later grew to include

local representations using invariant feature points [10], patches [6]

and fragments [11]. Because these methods often disregard geomet-

ric information about the position of important key points within
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Fig. 1. The attributed grammar for a specific object category can be represented by an And–Or graph. (a) shows one example for the clock category. An Or node (dashed) is

a “switching variable” for possible choices of the components. Only one child is assigned for each object instance. An And node (solid) represents a composition of children

with certain spatial and appearance relations. The bold arrows form a sub-graph of the And–Or graph (also called a parsing graph) that generates a specific object instance

(a clock) in the category. The process of object recognition is thus equivalent to assigning values to these Or nodes to form a “parsing graph”. (b) lists three different clock

instances and their parsing graphs.

an object, they are not well-suited for recognition in scenarios where

pose, occlusion, or part reconfiguration are factors.

Structure-based approaches were introduced in the last decade to

account for pictorial deformations [12] and variance in the shapes

of patches [6,13]. These methods, such as the constellation model,

model relationships between groups of parts using a graph repre-

sentation (such as a Markov random field, MRF, or implicit shape

model), and can thus improve recognition accuracy over purely

appearance-based methods. Significant work has been done re-

cently using structure-based approaches to perform general image

recognition, including the tasks of scene segmentation and structure

inference [5,14].

Though the two methods above have made remarkable progress

in the field of object recognition, they have problems overcoming the

huge variability in appearances of compositional object categories,

which are very common in daily life. The appearance-based models

require a huge number of training examples to learn an accurate

model due to their lack of compositional and generative structures.

They often over-fit a specific training set and can hardly generalize

to novel instances or configurations, especially for categories that

have large intra-class variations.

Very recently there has been a resurgence in modeling and recog-

nizing object categories through grammar-based approaches [15–17].

Early work by [18], Dickinson [19,20], and Ohta [21] introduced these

grammars to account for structural variance, but worked primarily

on-line drawings and silhouette shaped contours. Han [16] and Chen

[15] used attributed graph grammars to describe rectilinear scenes

and model clothes, but were hard-coded for one category of images.

The further grammar works on object recognition are presented by

Lin [17] and Zhu [22]. Outside of the recognition community, Mark

et al. designed a constrained grammar for text parsing [23], though

its relational constraints were only on neighboring words, thus not

incorporating full context.

Following the stream of grammar-based approaches, we present a

stochastic grammarmodel for representing general object categories.

This model, combined with the proposed recursive inference algo-

rithm, can model compositional objects well, outperforming the tra-

ditional methods mentioned above. The authors presented a related

paper using this grammar-based approach [17] to perform stochas-

tic sampling from a grammar model of objects to synthesize new

object instances and discussed the benefit of using these samples to

improve testing accuracy. That paper serves as additional empirical

support to the method proposed in this paper.

1.2. Method overview

The proposed hierarchical generative representation using a

stochastic attribute graph grammar is termed an “And–Or graph”,

borrowing loosely from the knowledge representation terminology

coined by Pearl [24]. Fig. 1(a) shows the And–Or graph for the

clock category. The Or nodes (dashed) are “switching variables”, like

nodes in an SCFG, that choose between possible sub-configurations

of the object, thus accounting for structural variance. Only one

child is assigned to each Or node during instantiation. The And

nodes (solid) represent pictorial composition of children with cer-

tain spatial relations. The relations include butting, hinged, attached,
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Fig. 2. A hierarchical representation of the generative vocabularies. From top to bottom, the three layers are, respectively, the compositional objects, the part templates

and the generalized geometric primitives (circles, ellipses, rectangles, bars, triangles, etc.). The elements in one level are composed of elements in the level below. Different

objects can share common parts, while different part templates can share common primitive templates.

contained, cocentric, colinear, parallel, radial and other constraints.

Porway et al. [25] describe how these relations can be effectively

pursued in a minimax entropy framework with a small number of

training examples. Assigning values to the Or nodes and estimating

the variables on the And nodes produces various object instances as

sub-graphs/parsing graphs (Fig. 1(a)). Three different clock instances

derived from the clock And–Or graph are shown in Fig. 1(b). The

goal of a hierarchical object recognition process is thus equivalent in

constructing the parsing graphs on the fly. Fig. 2 shows the hierar-

chic dictionary of the And–Or graphs. First, objects are decomposed

into their constituent parts and then modeled by visual vocabular-

ies similar to [26]. Fig. 2 shows five compositional object categories

(bicycles, clocks, cups, monitors and teapots) and the components

they are composed of at different levels. Secondly, components at

each level are composed to form large structures, and two different

objects may share common parts at the lower level. Thirdly, the

compositions are specified through a set of attribute grammar rules.

Each rule is associated with a number of hard or soft constraints

on the attributes of the components, so as to model the pictorial

relations. For example in Fig. 1(a), an hour hand, a minute hand and

a second hand are grouped together by a “hinged” relation to form

the clock hands. Finally, each compositional object category is rep-

resented by an And–Or graph which is a graphical representation

for the attribute grammar.

The inference procedure follows a stochastic formulation in a two

stage process. First the parts/primitives are detected using bottom-

up methods. These detections in turn recursively activate the gram-

mar rules for top-down verification and searching for missing parts.

This process also allows us to hallucinate occluded/undetected parts

in the final configuration based on top-down knowledge from the

model.

The bottom-up step detects the parts/primitives of the object

parts in two ways:

(a) Implicit testing: detecting instances of parts or primitives from

the constructed sketch-graph, through a sequence of tests, such

as Adaboost [1] or Generalized Hough Transform. For example

in Fig. 5, the geometric primitives like ellipses and triangles are

detected.

(b) Explicit binding: proposing instances of graph nodes by binding

their detected children nodes through a sequence of tests on

compatibility. For example, two concentric ellipses are grouped

into a wheel proposal. Usually the feature detectors we use are

trained off-line.

The bottom-up hypotheses in turn activate the grammar rules

embedded in the graph model for top-down verification, shown in

Fig. 5. This top-down verification via the grammar rules includes

three components:

1. Match the best composite template from the model to the image

given the bottom-up hypotheses.

2. Search for weak/miss-detected parts given other verified parts

that belong to the same larger structure, subject to certain rela-

tionships.

3. Hallucinate the occluded parts by sampling from the prior model

learned from training data.

The bottom-up and top-down steps are recursively invoked during

the whole inference process. As shown in Fig. 5, we not only rec-

ognized, but also precisely localized the bicycle and parsed it into

its constituent parts. Our recursive algorithm is designed in a simi-

lar spirit to DDMCMC [27]. Later, we show that deterministic deci-

sions can be made in approximating the globally optimal solution

by invoking the bottom-up and top-down steps according to the

most reliable bottom-up feature detectors. Similar work was done

recently in [15,16], though both these papers focus on specific do-

mains, like rectangles or clothes. We present a general and scalable

framework for many general object recognition. Another related

work is [28], given that an edge/sketch representation was also used

to capture the structures of objects. However in contrast to the

outlined-templates used in [28], we use templates that have flexi-

ble topologies and are full of intra-contour structures. Experiments

showed that our model can be constructed effectively from a rela-

tively small training set (30–50) per category. The efficiency of our

inference algorithm is also illustrated on detection and recognition

of a set of selected compositional object categories: clocks, bicycles,

monitors, cups and teapots in natural images.

This paper is one of a series of papers prepared by the authors

and their colleagues in the vision lab at UCLA. This paper was origi-

nally written for submission in 2005 and 2006, the technical paper

versions of which were then cited in [25]. In addition, a survey of the

lab's work was published in [29], which encompassed some of the

early results herein. Readers are referred to [25,29] for more details

about this work and its context within the greater work being done

by the lab.

The remainder of this paper is arranged as follows. We present

the And–Or graph representation and grammar in Section 2, fol-

lowed by the probabilistic formulation in Section 3. The algorithm is
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discussed in Section 4, and experiments with comparisons are

reported in Section 5. The paper is concluded in Section 6 with a

discussion of future work.

2. Representing compositional objects

We begin by briefly reviewing the attributed grammar followed

by a description of our representation for the parts and constrained

grammar rules.We then show their equivalence to the And–Or graph.

2.1. Attribute grammars

An attribute grammar is defined as a 4-tuple as in [25,29]

G= (VN ,VT ,R,�)

VN is a set of non-terminal nodes, and VT is a set of terminal nodes.

R is a set of production rules. Each rule describes how to expand

a non-terminal node, for example a clock frame is expanded into a

set of ellipses. � is a set of configurations that can be produced by

repeatedly applying production rules to the root node S ∈ VN

�(G) = {(C,X(C)) : S R∗
−→C}

This is the language of G. For most of the object categories, the total

number of valid configurations often largely outnumbers the sum of

all the nodes in the And–Or graph

|�|?|VN ∪ VT |

Most importantly, � includes novel configurations never seen in the

training set. This generalization power is critical for modeling com-

positional object categories. The order in which the grammar rules

are applied defines the “parsing graph” for an object instance. In

many cases, there may be more than one valid parsing graph for a

configuration C, in which case a probability formulation is used to

select the most probable graph.

2.2. Primitives for object representation

We use a geometric representation of primitives in this paper

where each terminal is defined by a sketch-graph

VT = {(a, x(a)) : la ∈ �L, x(a) ∈ �a} (1)

a = {Va, Ea, Ia, la : la ∈ �L} (2)

x(a) = fi(Va, Ea, Ia|la), i = 1, 2, . . . ,n(l) (3)

Each terminal a consists of a set of vertices V, a set of edges E,

the intensity profiles across the edges I, and a label l for its type.

The attribute for a terminal node x(a) is defined as a function of its

structure, dependent on the type of the primitive. For compositional

object categories, the intensity profiles rarely give enough informa-

tion for recognition, but are instead used for consistency checks, for

example ensuring the color around the edge of a frame is similar.

We design a set of sketch-graphs, in which the vertices are ar-

ranged in such a way that they well represent generalized geometric

primitives (circles, ellipses, rectangles, triangles, etc.). For example,

a set of small line segments can be connected sequentially to form

a circle, while their centers satisfy the circle equation and their di-

rections point to the tangent. The number of line segments is pro-

portional to the perimeters. We can also define a rectangle with

four “L” junctions connected by two pairs of nearly parallel line seg-

ments such that the length ratios and corner angles satisfy certain

constraints. It, thus, allows us to combine the Generalized Hough

Transform and template matching [30,31] techniques for performing

flexible and robust bottom-up detection.

2.3. Compositional relations and grammar rules

To account for the constraints between parts, we define a set of

relationships, such as “relative position”, “relative scale”, “hinged”, etc.

These relationships cover the constraints between every attribute

x(a) of every possible node. While the attribute constraints relate the

shapes of the node pairs, such as similar interior angles, the spatial

constraints enforce relations like cocentricity and collinearity, such

as the rings of clock frame shown in Fig. 1(a). Another example

is the “hinged” relation among the clock hands. Porway et al. [25]

shows how to effectively pursue these relationships using a minimax

entropy framework.

We also define three types of production rules. The first rule

expands the scene node S into m objects. The second rule expands a

node A into 2, . . . ,m related nodes. For example, the numbers on the

face of a clock would be decomposed into m=12 separate nodes, all

related by the “radial” constraint (Fig. 1(a)). The third rule expands

a non-terminal node into a terminal node, subject to some attribute

constraints. For example, the inner frame of the diamond clockwould

be constrained to match the outer frame's diamond shape (as shown

in Fig. 1(b)).

2.4. The And–Or graph representation

The And–Or graph is a visual representation of the attribute gram-

mar that integrates stochastic context free grammar (SCFG) models

and pictorial models. In the And–Or formulation Vt , R, and � are

the same as in the attribute grammar. The only change is that we

classify our non-terminal nodes VN as And and Or nodes

VN = VAnd
N ∪ VOr

N

An And node can be thought of as the result of a production rule. For

example, if we follow the production rule A1 → (A2,A3), we consider

the result, (A2,A3) an And node, as it must consist of both A2 and A3.

An Or node VOr
N is the production rule chosen to expand node A

VOr
N = (A,�(A))

We define a switching variable �(A) which indexes the rule chosen.

For example, if the production rules Ai → A2 and Ai → (A3,A4) both

exist, �(Ai) = {1, 2} depending on which rule we use to expand Ai.

The And–Or graph for the clock category is shown in Fig. 1(a),

where the root node is an And node and is denoted by a solid circle.

The dashed circles denote the Or nodes, e.g. the Hands, which is

expanded into 2 Hands or 3 Hands configurations. The horizontal

lines are the spatial relations. Leaf-nodes (primitives) are denoted

by rectangles.

3. Probabilistic formulation

As the And–Or graph derives from SCFGs and MRFs, we formulate

the probabilistic framework for the And–Or graph as a combination

of these two models. This is similar to the constrained stochastic

language models in [15,16].

3.1. Stochastic context free grammars

The hierarchical nature of the And–Or graph can be modeled as

an SCFG. If we traverse the graph using only Or nodes, then we arrive

at a parsing tree consisting only of parts pgt . This parsing graph does

not include any spatial relationships as of yet. The prior probability

p(pgt) for tree pgt is just the product of probabilities of rules, which
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can be viewed as switch variables on the Or nodes

p(pgt) =
n∏

i=1

p(ri) (4)

This captures the hierarchy of the compositional objects.

3.2. Markov random fields

Given a parsing graph pg for an object, like those shown in

Fig. 1(b), we embed a MRF on each of the And nodes to constrain

the node attributes and the relation between pairs of nodes using

�(X(Ai)) and �(X(Ai),X(Aj))

p(A) ∝
n∏

i=1

�(X(Ai))
n∏

i=1

∏

j∈Ni

�(X(Ai),X(Aj)) (5)

This defines the probability of a configuration for an And node con-

strained by spatial relations and attributes.

3.3. And–Or graph for compositional objects

The probability model for an And–Or graph is the combination of

the probability models for an SCFG and an MRF. By embedding the

Markov constraints �(X(Ai)) and �(X(Ai),X(Aj)) into the SCFG model,

we form a graph that captures object hierarchy from top to bottom as

well as spatial and attribute constraints horizontally between nodes

at the same level. We can express the prior probability of a graph pg

as the distribution that minimizes the Kullback–Liebler divergence

between some true unknown distribution for the tree structure f (pg)

and our prior p(pg), subject to our spatial and relational constraints

p∗(pg) = argmin
∑

pg

f (pg) log
f (pg)

p(pg)
(6)

This is equivalent in finding the maximum entropy distribution for

the right term above and can be expressed as

p∗(pg;�) = 1

Z
exp(−E(pg)), � = (�,�,�) (7)

E =
∑

v∈V
�(�(v)) +

n∑

i=1

�(X(Ai)) +
n∑

i=1

n∑

j=1

�(X(Ai),X(Aj)) (8)

The first term of the energy function is simply the frequencies at

each Or node, and thus is equivalent to a SCFG. The second and third

terms are the singleton and pairwise energies defined by the Markov

constraints. Thus the probability of a graph p(pg) is equivalent to the

probability of its branching tree, subject to Markov constraints. In

[25,29], these constraints are pursued by a minimax entropy frame-

work.

3.4. Likelihood measurement

Combining the SCFG and MRF models, the probability model for

the And–Or graph model (as in Eq. (7)) can be learned as a prior term

for inference. The likelihood for this model is formed from the prob-

ability of matching each terminal graph node (sub-templates) gi ∈ VT

with domain 	i to the image patch I	i . The likelihood model is

P(I	|G;
) =
∏

gi∈VT

P(I	i|gi;
i) (9)

where 
 = {
1,
2, . . . ,
N} is the dictionary of all object primitives

associated with the templates, as shown in Fig. 2(a). We use a graph

matching model [30] to measure the goodness of fit P(I	|gi;
) to

its image patch 	i. This graph matching technique accounts for

the photometric, geometrical and topological aspects of the object

primitives.

4. Recursive inference

We represent a scene by n independent objects and each object

is represented by a specific parsing graph pgi ∈ �(G), i = 1, 2, . . . ,n.

For a scene that contains three objects, the parsing graph is thus

(pg1, pg2,pg3,Gsk). Gsk is a single layer graph denoting the “free

sketches” comprising the background. Object recognition is thus

equivalent to optimizing the Bayesian posterior probability

�∗ = argmaxp(I|�)p(Gsk)p(K)
K∏

i=1

p(pgi;�) (10)

where K is the number of objects in the image (K = 1 in the mostly

cases) and � consists of the parameters for the parsing graphs.

As the And–Or graph is defined recursively, we can also define

the inference algorithm recursively. This recursive property largely

simplifies the algorithm design and makes it easily scalable to an

arbitrarily large number of object categories. Similar to [15,16], our

algorithm integrates two closely coupled processes, bottom-up de-

tection of parts/primitives from the image and top-down verifica-

tion using our learned model. These two processes form an iterative

loop. This cycle continues back and forth until no further bottom-up

steps remain, or until we reach the root node of the parsing graph.

The algorithm keeps two data structures for each graph node

as shown in Fig. 3. Thus the bottom-up steps stop when particles

weights in the Open List are all lower than some empirical threshold,

and top-down verification steps stop when only object nodes are left

in the Closed List.

• An Open List: stores a number of weighed hypotheses (denoted by

particles) that are detected in the bottom-up phase.

• A Closed List: stores a set of graph node instances verified in the

top-down phase. These instances compose the current parsing

graph.

Before entering the iterative cycle, we convert the original image

into a “sketch-graph” or “primal sketch” by detecting and grouping

edges, corners and junctions [32]. This diminishes the effects of var-

ious colors and illuminations while keeping the crucial structural in-

formation from the image. The sketch-graph of a partially occluded

bicycle image is shown in Fig. 5(a).

closed list (verified instances)

open  list (weighed proposals)

Fig. 3. The open and closed lists used during the bottom-up/top-down inference.

The Open List contains particles that are currently under consideration for the

current explanation of the scene, while the Closed List contains particles that have

already been accepted to explain the scene. The arrows indicate that evidence for

the particles can come from bottom-up detections, top-down predictions, or both.
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Fig. 4. Bottom-up/top-down inference of the bicycle example. Bottom-up proposals are denoted by red arrows pointing upward, e.g., the circle, ellipse and triangles.

Top-down predictions are denoted by blue arrows pointing downward, e.g., the frame. Note that the bottom-up and top-down processes happen recursively. For example,

first circles are detected in (a), and a production rule is activated to group two concentric circles into a wheel. The wheel proposal is then accepted and in turn activates

the prediction of the frame (b). In (c), a template match component tries to explain the predicted frames using the detected triangles and lines and accepts the best match.

In (d), as the seat and handlebars are mostly occluded, they are randomly sampled from the learned prior model keeping the frame and wheels fixed, as shown by green

downward arrows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.1. Bottom-up phase

In the bottom-up phase we generate hypotheses of parts or prim-

itives from the sketch-graph (denoted by red upward arrows in

Fig. 4) in two ways: implicit testing and explicit binding. These pro-

posals are weighed according to how frequently they occurred in

training examples and how well they match the underlying pix-

els in the current image. These hypotheses are stored in the Open

List.

Implicit testing: It entails searching the sketch-graph that we com-

puted beforehand for a set of pre-defined primitives (defined as

sub-sketch-graphs), such as circles, ellipse, sticks, triangles and rect-

angles. We use techniques like AdaBoost [1] and the Generalized

Hough Transform to find commonly occurring shapes. Fig. 5(a) shows

the proposed ellipses, circles and triangles found using AdaBoost

and the Generalized Hough Transform. Because the And–Or graph is

defined recursively, many of the parts or primitives in our dictionary

are shared across different object categories. This property enables

us to produce a large number of configurations from a relatively

small set of parts or primitives. It also justifies our use of a fixed pool

of feature detectors for proposing these parts and primitives, as we

need only to find a small set of common shapes. These detectors are

trained off-line.

Explicit binding: We use explicit binding to propose parts that are

mostly composed of other easy-to-detect primitives. Given that a

couple of nearby primitives are successfully detected, we can bind

them into a larger structure through a sequence of tests on their com-

patibility. For example in Fig. 4, two concentric ellipses are grouped

into a wheel proposal. Other relations (Fig. 2(b)) are also checked in

the compatibility tests.

Visiting order: The computational robustness and efficiency of de-

tecting a part or primitive may vary a lot depending on its shape.
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Input Image Sketch-graph circles and ellipses generalized triangles and line segments

Matching energy: 0.194 Matching energy: 0.713 Matching energy: 0.821 Matching energy: 0.287

Fig. 5. Example for parsing a partially occluded bicycle. (a) shows the input image. The sketch-graph, a set of small linelets, corners and junctions, is then computed by

edge/corner/junction detection techniques. In the initial bottom-up stage, a number of generalized primitives are proposed, such as ellipse and triangles. (b) shows the

top-down predictions of a bicycle frame with fixed wheels. The transformed parameters of the frame are sampled from the learned MRF model. As we cannot tell

the difference between the front/rear wheels at this moment, the frames are sampled for both directions. (c) shows the template match of the predicted frames, where the

one with the minimum matching cost (highlighted in red) is selected. (d) shows the top-down hallucinations for the seat and handlebars. As these two parts are mostly

occluded and lack support from the image, they are randomly sampled from the prior model (highlighted in red). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Fig. 6. Recursive top-down/bottom-up inference algorithm.

For example, the handlebars or seats of the bicycles are usually very

hard to accurately detect and blend in with clutter very easily. Also

some tests are too costly to perform in the early stages, such as

blindly searching for triangles to compose the bicycle frame. We

thus traverse the And–Or graph in an orderly manner during infer-

ence. In our experiments, the visiting order is decided by comparing
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Fig. 7. Parsing/recognition results for compositional object categories, including bicycles, clocks, monitors, cups and teapots. The most informative parts detected in the

bottom-up stage are denoted in red, such as the bicycle wheels, monitor frames, clock frames and cup lips. The predicted and matched parts using top-down knowledge are

denoted in blue, such as the clock hands, the bicycle frame, cup handles and teapot bases. The parts with weak image evidence (noisy or occluded), which are hallucinated

and matched using the prior models, are denoted in green, such as the clock numbers, monitor base, teapot spot and bicycle seat/handlebars. The wrong hallucination

results, which do not match human perception, are indicated by circles [25]. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

the bottom-up detection rate of different parts. As the bottom-up

receiver-operating characteristic (ROC) curves in Fig. 8 indicate, the

bicycle wheels are detected most reliably among all the parts of the

bicycle. When we fix the detection rate to be 100%, the average false

positive number per image of wheels, frame, seat and handlebars are

27, 322, 296, 268, respectively. Thus, we look for the wheels first as

they have the least ambiguity. In doing so we approximate the glob-

ally optimal parse by making deterministic decisions about which

parts to look for first.

4.2. Top-down phase

Both human intuition and experiments on neuronal response in

visual cortical processing [33] indicate that top-down influences are

present from the very beginning of image understanding to the end.

For example, the first glance at the partially occluded bicycle image

in Fig. 5 may only trigger some “circle/ellipse” alarms because they

are the most strong stimuli. However our mind, being familiar with

bicycles, may immediately pop-out a frame between the two wheels.
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Fig. 8. ROC curves of the detection results for bicycle parts. Each graph shows the ROC curve of the results for a different part of the bicycle using just bottom-up information

and bottom-up + top-down information. We can see that the addition of top-down information greatly improves the results. We can also see that the bicycle wheel is the

most reliably detected object using only bottom-up cues, so we will look for that part first.

With a quick second glance, even the seat and handlebars may be

“seen”, though they are actually occluded. Our algorithm simulates

the top-down process (indicated by blue/green downward arrows in

Fig. 4) in a similar way, using the constructed And–Or graphs.

Verification of hypotheses: Each of the bottom-up proposals ac-

tivates a production rule that matches the terminal nodes in the

graph, and the algorithm predicts its neighboring nodes subject to

the learned relationships and node attributes. For example in Fig. 4,

a proposed circle will activate the rule that expands a wheel into

two rings. The algorithm then searches for another circle of propor-

tional radius, subject to the concentric relation with existing circle.

In Fig. 5(b), the wheels are already verified. The candidate frames

are then predicted with their ends affixed to the center points of the

wheels. Since we cannot tell the front wheels from the rear ones at

this moment, frames facing in two different directions are both pre-

dicted and put in the Open List. In Fig. 5(a), the triangle templates

are detected using a Generalized Hough Transform only when the

wheels are first verified and frames are predicted. If no neighboring

nodes are matched, the algorithm stops pursuing this proposal and

removes it from the Lists. Otherwise, if all of the neighboring nodes

are matched, the production rule is completed. The grouped nodes

are then put in the Closed List and lined up to be another bottom-up

proposal for the higher level. Note that we may have both bottom-

up and top-down information being passed about a particular pro-

posal as shown by the gray arrows in Fig. 3. In Fig. 4, the sub-parts

of the frame are predicted in the top-down phase from the frame

node (blue arrows); at the same time, they are also proposed in the

bottom-up phase based on the triangles we detected (red arrows).

Proposals with bidirectional supports such as these are more likely

to be accepted. After one particle is accepted from the Open List, any

other overlapping particles should update accordingly.

Template match: The pre-defined part templates, such as the bi-

cycle frames or teapot bodies, are represented by sub-sketch-graphs,

which are composed of a set of linked edgelets and junctions. Once a

template is proposed and placed at a location with initial attributes,

the template matching process is then activated. As shown in
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Fig. 9. Recognition results with comparison. (a) shows the ROC curves on bicycle images from LHI dataset. The AUC of the proposed framework is 0.962. (b) shows the ROC

curves on rear-car data on Caltech dataset. The AUC of our method is 0.970.

Fig. 5(c), different frames are matched to the sketch-graph of the

input image using thin-plate-spline warping with an affine transfor-

mation described in [15]. The template with the minimum matching

cost is then selected as shown in Fig. 5(c). Some primitives that

are detected in the bottom-up stage are used as “seed graphs” to

initialize the template matching and greatly speed up the process.

Note that two input graphs each consisting of around 50 vertexes

(within a 100 × 100 image patch) take about 10 s for matching.

Hallucination: The image noise or occlusion means some object

parts are not detectable, even with sufficient context. For example,

the bicycle seat and handlebars in Fig. 5 are mostly occluded by the

tree-leaves and lack evidence from the image pixels themselves. We

thus cannot achieve enough support from the image and have to in-

stead resort to prior knowledge. Themissing parts are then randomly

sampled from the prior model learned beforehand as in [25]. In

Fig. 1(d), the handlebars and seat are hallucinated with reasonable

spatial constraints with respect to the verified parts. In the first

bicycle example in the second row of Fig. 7, we hallucinate the han-

dlebars that were not detected due to background clutter. These

handlebars are circled to indicate that the shape sampled from the

prior looks awkward to a human, as they appear backwards. How-

ever, we are still able to put the handlebars in the proper position,

with the proper scale and orientation.

The complete algorithm proceeds in Fig. 6.

5. Experiments

Since the recognition rates are already very high on relatively

clean images (like the Corel dataset), we test six compositional ob-

ject categories (bicycles, clocks, monitors, teapots, cups, and rear-

view car) on challenging LHI [34] and Caltech [4] datsets. With the

supervised labeling work supported by Lotus Hill Institute, we are

able to learn the And–Or graph model for the compositional objects

as in [25].

Fig. 1 shows an And–Or graph of clocks. Figs. 4 and 5 show the

parsing graph and running example of a bicycle. A few illustrative

recognition results are shown in Fig. 7, which was shown in [25].

The most informative and thus reliably detected parts are denoted

in red, such as the monitor frame, clock frame, cup openings and

bicycle wheels. The predicted and matched parts using top-down

knowledge are denoted in blue, such as the bicycle frame, clock

hands, cup handles and teapot vessels. For those parts with weaker

image evidence (occluded or noisy), we use green to denote the hal-

lucinated and matched results, such as teapot spout, clock numbers

monitor base and bicycle seat/handlebars.

LHI dataset: In order to further quantitatively illustrate the ben-

efit of our grammar model we ran our inference algorithm on 200

bicycle testing images from LHI dataset [34] using a learned And–Or

graph model for bicycles. As shown in Fig. 7, the testing images con-

tain cluttered background. For comparison, we train a HOG based

SVM [3] classifier and Haar-feature based Adaboost classifier [1] on

selected training images (200 positive and 400 negative samples,

respectively). Recognition performance is reported as ROC curves,

as presented in Fig. 9(a). The area under ROC curve (AUC) of the

proposed grammar model with our recursive inference algorithm

is 0.962.

Caltech dataset: We performed the same experiment on rear-view

car images from the Caltech dataset [4], which contain relatively

clean backgrounds. We randomly selected 50 samples from a total of

550 images for testing. We compare our method against the method

used in [8], which uses SIFT features in a boosting framework, as well

as against the probabilistic boosting tree (PBT) framework with filter

bank features [35]. As shown in Fig. 9(b), the AUC of our framework

achieves 0.970.

6. Discussion

In this paper, we presented a model for representing compo-

sitional object categories as an attribute grammar. This context

sensitive approach is novel for the field of object recognition and

bridges the gap between appearance models and pictorial models.

In addition, the recursive inference algorithm, which alternates be-

tween bottom-up and top-down phases is a very powerful method

of quickly constraining bottom-up detection and testing top-down

constraints.

There are still many problems to overcome for unified grammar-

based object category recognition. First, we should flexibly integrate

more effective features (including structural and texture features)

in the bottom-up module. Mining proper features for a vast number

of object categories and specific object parts is a challenging topic.
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Secondly, the current computational efficiency of proposed grammar

approach is relatively slower than those discriminative approaches

(the mentioned Adaboost [1] and SVM+HOG [3]). The average cost

time for a testing images is around twice longer. To improve the

efficiency of top-down verification, we plan to adopt another gen-

erative deformable template matching technique from our group,

which achieved high attention in 2007 [31]. In addition, scheduling

the implicit testing and explicit binding components for bottom-up

detection is also a serious task in recursive inference, i.e. how to ad-

just the visiting order. Besides comparing the discriminative power

as illustrated in this paper, some psychological statistics will also be

considered in the future.
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