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The representation and recognition of complex semantic events (e.g. illegal parking, stealing objects) is a
challenging task for high-level understanding of video sequence. To solve this problem, an attribute graph
grammar for events modeling is studied in this paper. This grammar models the variability of semantic
events by a set of meaningful ‘‘event components” with the spatio-temporal constraints. The event com-
ponents are defined manually according to their semantic meaning, and further decomposed into atomic
event primitives. These event primitives are learned on a object-trajectory table that describes mobile
object attributes (location, velocity, and visibility) in a video sequence. A dictionary of temporal and spa-
tial relations are defined to constrain the event primitives. With this representation, one observed event
can be parsed into an ‘‘event parse graph”, and all possible variability of one event can be modeled into an
‘‘event And–Or graph”, in a syntactic way. The probability model of an ‘‘event And–Or graph” can be
learned on a set of annotated event instances, and given a learned event And–Or graph, a Gibbs sampling
scheme is utilized for inference on a testing video. In the experiments, we test events recognition perfor-
mance of the proposed on both real indoor and outdoor videos and show quantitative recognition rate on
the public LHI dataset.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Video understanding is a hot research topic in recent years, with
many applications, such as visual surveillance, video browsing and
content-based video indexing. And its key task is to monitor/recog-
nize events on-line or off-line. To achieve these tasks, a number of
key issues, such as background modeling (Stauffer and Grimson,
1999), object tracking (Li et al., 2007), object detection/classifica-
tion (Lin et al., 2007; Zhu and Mumford, 2007; Lin et al., 2007), illu-
mination/occlusion problems (Haritaoglu et al., 2000), are well
studied in computer vision research. However, a good event repre-
sentation is still required for high-level meaningful event under-
standing, fully taking advantage of those object tracked and
classified results.

In this paper, we aim to define a probabilistic attribute graph
grammar that allows syntactic representation of complex spatio-
temporal events common in real visual surveillance. This grammar
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model decomposes a semantic event into a composition of mean-
ingful actions, called ‘‘event components”, with a dictionary of spa-
tio-temporal relations. Each event component is further divided
into a number of atomic activities, called ‘‘event primitives”. An
specific semantic event is thus a configuration of event primitives
with tempo-spatial relations, and it can be described by an ‘‘event
parse graph”. In order to incorporate semantic meaning of events,
the ‘‘event components” are always labeled manually, while the
‘‘event primitives” and the corresponding tempo-spatial relations
can be learned in a supervised way.

As shown in Fig. 1, one event ‘‘ a waiting car is picking up a com-
ing man” is divided into three event components, ‘‘car waiting”,
‘‘picking up”, and ‘‘moving away”, with temporal constraints
(sequential order). And the ‘‘picking up” component is further
decomposed into two components, ‘‘man is approaching to the car”
and ‘‘man is entering the car”, with sequential order as well. Finally
these event components can be explained by event primitives in
the lowest level, such as ‘‘stop”, ‘‘moving”, ‘‘stay”, and ‘‘death”.
These primitives can be computed via related tracked objects fea-
tures (visibility, location, velocity), as shown in the bottom of
Fig. 1. Besides, all possible configurations for a variable semantic
event can be modeled into an ‘‘event And–Or graph”, with the pro-
posed attribute grammar representation (Fig. 2). The attribute
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Fig. 1. Event parse graph to represent one specific semantic event. An event is divided into three event components, with temporal constraints (sequential order). And one of
these components is further decomposed into two sub-components with sequential order as well. Finally these event components can be explained by event primitives in the
lowest level, which can be computed via related tracked objects features (visibility, location, velocity), as shown in the bottom of this figure.
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Fig. 2. Event And–Or graph to represent all possible variety of a semantic event. In this figure, an event ‘‘a coming car is picking up a man” is modeled with an event And–Or
graph, in which the And-nodes and Or-nodes denote meaningful event components. Each And-node is compositional and Or-node is a choice. The And-nodes and Or-nodes
(event components) can be decomposed into a set of Leaf-nodes (atomic event primitives) with temporal-spatial constraints.
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grammar and event And–Or graph will be further studied in Sec-
tion 3. Intuitively, one event parse graph is once instance derived
from event And–Or graph, as well as one specific event from all
possible variety.

The event representation we studied is embedded in an
intelligent visual surveillance system, which comprises a motion
detection module, a target tracking module, and an object classifi-
cation module. In order to highlight the event representation and
recognition, we assume that the good object trajectory and object
type can be provided by the surveillance system. To extend appli-
cation of event recognition, we can also describe events with ‘‘vir-
tual objects”, a region or a line specified by user in the scene. For
example, to recognize the event ‘‘a man is turning over a wall”,
we can label a forbidden virtual region for the wall.
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2. Related work

In the computer vision literature, there has been a significant
amount of event understanding research in various application do-
mains (Buxton and Gong, 1995; Haritaoglu et al., 2000; Medioni
et al., 2001; Ivanov and Bobick, 2000; Bobick and Wilson, 1997;
Collins et al., 2000; Xu and Chang, 2007).

The early research for event analysis started on model postures
(e.g. ‘‘standing close to a car”) or simple events (e.g. ‘‘sitting”) from
the visual evidence gathered during a short video sequence (Bobick
and Wilson, 1997). Bayesian network and its variants are widely
used for these approaches (Binder et al., 1997). Their main limita-
tion is that they are not suitable for encoding the dynamic of long-
term activities, due to discarding the temporal relations.

To represent temporal trajectories, Hidden Markov Models and
their variants are adopted as the state-based representations, in-
spired by the applications in speech recognition. These approaches
automatically learn the states and transition probabilities from
event samples. For example, parameterized-HMMs (Wilson and
Bobick, 1999) and coupled-HMMs (Oliver et al., 2000) were intro-
duced to recognize a more complex event such as an interaction of
two mobile objects. However, most of these approaches lack a mul-
ti-layer probabilistic model to combine each state in a syntactic
way to represent meaningful events in high-level.

It is worth mentioning one remarkable work by Ivanov and Bo-
bick (2000), which our approach is related to. This method aims at
higher-level behavior and employs a two-layer event abstraction.
At the lowest level, simple events similar to our defined event
primitives are modeled by HMM, and a stochastic context free
grammar (SCFG) is constructed for the problem domain with the
simple events as terminals. However, this method and ours are dif-
ferent in many aspects. First, they define simple events using only
trajectory of tracked object, while our event primitives are defined
on more detailed attributes, such as velocity, visibility, and loca-
tion. Second, they use temporal constraints to connect simple
events without addressing spatial relations and they did not pro-
vide the parameterized definition of constraints for learning,
resulting in most essential information are omitted. In contrast,
we define the events probability model with spatial and temporal
relations, respectively, which are learned from a set of annotated
videos. Third, their applications are limited to simple event with
single-agent, while our approach is able to solve more complex
interactive events, such as ‘‘a car stopped and is picking up a wait-
ing pedestrian”.

In addition, the attribute graph grammar was first presented by
Han and Zhu (2005), Chen et al. (2006), and Zhu and Mumford
(2007) further discussed it as a large scale knowledge representa-
tion. We also show its success in object category recognition (Lin
et al., 2007). In this work, we extensively study it on event repre-
sentation and recognition, and show its applications in visual sur-
veillance system.

The remainder of this paper is arranged as follows. We first
present the event representation with attribute graph grammar
in Section 3, including event primitive definition (Section 3.3),
and spatio-temporal relations learning (Section 3.4). We then fol-
low with a description of the inference method on a learned
event representation in Section 4. The experiment results are
shown in Section 5 and the paper is concluded in Section 6 with
a summary.
3. Event representation with attribute graph grammar

An event representation needs to be able to represent a wide
variety of events flexibly. In this section, we introduce the attribute
graph grammar with the probabilistic models to represent seman-
tic events with event components, event primitives, and corre-
sponding constraints.

3.1. Attribute graph grammar

An attribute graph grammar is augmented from the stochastic
context free grammar (SCFG) by incorporating attributes and con-
straints on the nodes. The attributes and constraints can be mod-
eled by a markov random field (MRF).

An attribute graph grammar G is specified by a five-tuple

G ¼ ðS;VN;VT ;R; PÞ ð1Þ

where S is the root node and denotes one semantic compositional
event including a number of semantic event components.

The non-terminal nodes VN ¼ fVAND
N ;VOR

N g contain a set of And-
nodes and Or-nodes. Each Or-node VOR

i has a distribution pðxiÞ over
which of its x ¼ f1;2; . . . ;NðxiÞg children it is expanded into.
VT ¼ ft1; t2; . . . ; tTng represents the set of terminal nodes. In our
model, the non-terminal nodes (And-nodes and Or-nodes) are
meaningful event components, and the terminal nodes are atomic
event primitives, which are defined on event attributes /ðtiÞ.

R ¼ fr1; r2; . . . ; rNðRÞg in the formulation represents the set of
pairwise relations defined as functions over pairs of nodes
ðvi; vjÞ 2 VT [ VN , r ¼ wðvi; vjÞ. Each relation is a temporal or spatial
function between pair of nodes, for example the distance and angle
between the centers of the two nodes. These relations are defined
at all levels of the tree, and will be described in Section 3.3. The
probability model P is defined explicitly and will be introduced
in Section 3.2.

With this grammar representation, a class of semantic events,
‘‘a car picks up a man and leaves”, can be represented as shown
in Fig. 2. This event can be first decomposed into three event com-
ponents ‘‘waiting”, ‘‘picking up”, and ‘‘moving away”, with the
temporal constraints. The ‘‘waiting” component is an Or-node,
due to two possible cases, ‘‘one car waiting” and ‘‘one man wait-
ing”. The ‘‘picking up” component is an And-node and is composi-
tion of the ‘‘approach” component and the ‘‘enter” component,
with the temporal and spatial constraints (‘‘approach” occurs be-
fore ‘‘enter”, and ‘‘enter” occurs close to ‘‘approach” in spatial). Fi-
nally, all event components can be explained by a set of
parameterized event primitives, such as ‘‘stay”, ‘‘moving” and
‘‘stop”. In sum, this event And–Or graph models all possible vari-
ability of an event in a syntactic way.

3.2. Probability model learning

The probability model of an event And–Or graph contains the
frequencies at the Or-nodes, the relations constraints at the And-
nodes, and the attributes constraints at the Leaf-nodes (event
primitives).

As discussed in (Zhu and Mumford, 2007), the And–Or graph
probability model can be transformed to a tree structure with
embedded constraints, following the composition of SCFG and
MRF model, and the probability model of one semantic event can
be learned from a set of event instances, labeled event parse
graphs. In this sense, an parse graph is a valid traversal of an
And–Or graph. Therefore, each event parse graph consists of the
set of non-terminal nodes, V ¼ fv1; v2; . . . ; vNðvÞg 2 VN , a set of
resulting terminal nodes T ¼ ft1; t2; . . . ; tNðtÞg 2 VT , and a set of rela-
tions observed between graph nodes, R 2 R.

The structural components of And–Or graph are in forms of a
parse tree, and its prior model follows the product of all the switch
variables xi at the Or-nodes visited, that is, xi denotes the index of
the child node selected by Or-node VOR

i . Following (Zhu and Mum-
ford, 2007) and the SCFG model (Chi and Geman, 1998), we define
the probability of the parse tree as



Table 1
Event primitives defined on the trajectory table

Attributes Primitives function (B) Description

IsVisible Death Tracked blob B becomes invisible
Birth Tracked blob B becomes visible

Location Moving Tracked blob B is moving
Stay Tracked blob B stands by

Velocity Start Tracked blob B starts to move
Stop Tracked blob B stops

There are three attributes of tracked blobs in trajectory table, which are ‘‘IsVisible”,
‘‘Location”, ‘‘Velocity” shown in left column. Based on those attributes, the six
atomic event primitives are defined in middle column, and their descriptions are
shown right column.
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pðTÞ ¼
Y

i2VOR

piðxiÞ ð2Þ

Let pðxiÞ be the probability distribution over the switch variable xi

at node VOR
i . Suppose pðxijÞ is the probability that xi takes value j,

and nij is the number of times we observe this production, pðxiÞ
at node VOR

i can be calculated as

pðxiÞ ¼
YNðxiÞ

j¼1

pðxijÞnij ð3Þ

And according to the derivation in (Porway et al., 2007), pðxijÞ can
be directly learned from a number of observations (the correspond-
ing node in labeled event parse graphs), and Eq. (2) can be reformu-
lated as

pðTÞ ¼
Y

i2VOR

YNðxiÞ

j¼1

pðxijÞnij ð4Þ

The MRF is defined as a probability on the configurations of the
resulting parts of the parse tree. It can be written in terms of the
pairwise energies (relations) between nodes, and singleton energies
(event primitive attributes)

pðCÞ ¼ 1
Z

exp
�
P
i2T

/ðtiÞ�
P
hi;ji2V

wðvi ;vjÞ
ð5Þ

where /ðtiÞ denotes the singleton function corresponding to a sin-
gleton primitive attribute and wðvi; vjÞ denotes the pairwise con-
straint corresponding to a pairwise relation. The constraint
between non-terminal graph nodes will be computed on corre-
sponding primitives finally, and thus wðvi; vjÞ ¼ wðti; tjÞ.

Following the deriving process of Porway et al. (2007), we ob-
tain the final expression of P ¼ pðG; hÞ. Suppose R1

N is the number
of singleton constraints and R2

N is the number of pairwise con-
straints. Here we assume each event primitive is defined on one
attribute (location, velocity, or visibility), and one pair of primitives
is constrained by one temporal relation and one spatial relation.
Therefore, R1

N ¼ 1, R2
N ¼ 2, and wðti; tjÞ ¼ fwsðti; tjÞ;wtðti; tjÞg.

pðGÞ ¼ 1
Z

expf�EðGÞg ð6Þ
Time

1 460,431 2,0

1 462,431 0,0

1 461,428 1,1

1 437,473 0,0

0 **,** *,*

O1 (0) O2 (1) O3 (0) 

1 457,447 1,3

0 **,** *,*

0 **,** *,* 0 **,** *,* 0 **,** *,

0 **,** *,*

1 420,320 2,6

1 431,544 1,3

1 434,547 0,0

1 434,547 0,0

1 434,547 0,0

1 435,595 1,4

1 441,157 1,

1 442,160 0,

1 443,158 1,

1 443,157 0,

1 443,157 1,

1 440,269 1,

1 442,389 1,

Fig. 3. Trajectory table including tracked objects attributes Object ¼ hType;Attributesi. In
category. Here we define ‘‘type” as 0 – pedestrian, 1 – car, 2 – bicycle, and 3 – others. Ea
yes), Location (blob coordinates in frame), and Velocity (velocities in X,Y-axis). A few re
EðGÞ ¼ logðpðTÞÞ þ
X
i2T

XR1
N

a¼1

aa
i /

a
i ðtiÞ þ

X
hi;ji2V

XR2
N

b¼1

bb
ijw

bðti; tjÞ

¼ logðpðTÞÞ þ
X
i2T

ai/iðtiÞ þ
X
hi;ji2V

bs
ijw

sðti; tjÞ þ bt
ijw

tðti; tjÞ ð7Þ

where H ¼ ða;bÞ are related parameters of the probability model
and can be learned from a few annotated parse graphs, as proved
in (Porway et al., 2007). Intuitively, for a variable event, the basic
structural components (event components and primitives) and cor-
responding relations are essential and finite, like the basic words
and grammar rules, and thus can be learned from a few typical
instances.

3.3. Event primitives

We define atomic event primitive via tracked blob trajectories,
as shown in Fig. 3. This table can be the output from the visual sur-
veillance system, and contains tracked objects type and three main
attributes (IsVisible A1, Location A2, Velocity A3) in the video se-
quence. In Fig. 3, each row in the trajectory table includes all ob-
jects’ type and attributes in one frame, and a few frames (right)
are illustrated, including tracking blobs.

Based on the trajectory table, we define 6 atomic event primi-
tives Epset ¼ fEp1; Ep2; . . . ; Ep6g, as terminal nodes in graph represen-
tation, ti 2 Epset . The event primitives with related blob attributes
and descriptions are shown in Table 1.
O4 (0)

* 0 **,** *,*

1 1 442,185 1,1

0 1 439,190 0,0

1

0

1 441,181 1,2

1 442,189 0,0

3 1 440,189 1,2

3 1 441,225 2,2

1 1 448,338 1,1

O3 O1O4 O2

O2O3O4
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the trajectory table header, OðtypeÞ denotes tracked blob and type denotes object
ch cell in table denotes blob attributes in one frame, including IsVisible (0 – no, 1 –
lated video frames are illustrated in the right.
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Fig. 4. The prior probability distribution of five event primitives. Each distribution measure the event primitive feature with related attributes of tracked blobs, which are
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The prior model of those event primitives can be learned from a
number of annotated videos. According to Table 1, each primitive is
related to one attribute, and we count the attribute value in a short
time period on a set of labeled video. And then compute average
value distribution as prior model for each primitive, as shown in
Fig. 4. Notice that each primitive is related with only one attribute,
8 f ðEpm;AnÞ;m 2 1;2; . . . ;6;n 2 f1;2;3g. Therefore, as in Eq. (5), the
singleton function over each primitive /ðtiÞ can be defined

/ðtiÞ ¼ Distanceðf ðtijAnÞ; pðEpmjAnÞÞ ð8Þ

where ti denotes each terminal node in graph, and is related to
event primitive Epn with respect to attribute constraint /ðtiÞ. Notice
that the attributes ‘‘Location” ðA2Þ and ‘‘Velocity” ðA3Þ are two
dimensions, and it is straightforward that they need to be projected
into one dimension when computing.

3.4. Spatio-temporal relations

The spatio-temporal constraints of events is critical to under-
standing to hence representing compositional events, and here
we define 6 explicit temporal relations with prior histograms,
Table 2
Probabilistic temporal relations definition

Temporal relations (ti, tj) Logic definition Probabilistic definition

After endi < startj PðRt1Þ ¼ Pðstartj � endiÞ
Meets endi = startj PðRt2Þ ¼ Pðstartj � endiÞ
Overlap starti < startj < endi PðRt3Þ ¼ Pðstartj�starti

endi�starti
Þ

During startj > starti and endj < endi PðRt4Þ ¼ Pðstartj�starti

endi�endj
Þ

Starts starti = startj PðRt5Þ ¼ Pðstartj � startiÞ
Finish endi = endj PðRt6Þ ¼ Pðendj � endiÞ

Fig. 5. Prior histogram o
and implicit spatial function to account for spatio-temporal
constraints.

We assume the time cost of an event primitive as atomic time
unit, for example, the time costs of two event primitives are
TIpðtiÞ ¼ ½starti; endi� and TIpðtjÞ ¼ ½startj; endj�. We thus define six
explicit temporal relations based on Allen’s interval algebra (Allen
and Ferguson, 1994), and extend them to probabilistic form, as
shown in Table 2. The logic deterministic descriptions to temporal
relations is shown in the second column in Table 2, and the prob-
abilistic definition can be found in third column. The prior distribu-
tions of temporal relations thus can be learned from a number of
annotated video sequences in a supervised way, as shown in
Fig. 5. Therefore, posterior temporal relation wtðti; tjÞ over pair of
nodes, ti and tj, can be sampled as follows:

wt
mðti; tjÞ � PðRtmÞ; m 2 f1;2; . . . ;6g ð9Þ

For spatial constraints, we define spatial relations over one pair of
event primitives, based on distance and angle between them, as
shown in Fig. 6

wsðti; tjÞ ¼ Fðd;uÞ ¼ x1Dðti; tjÞ þ x2uðti; tjÞ ð10Þ

where Dðti; tjÞ denotes Euclidean distance of two event primitives
(center of tracked blob) and uðti; tjÞ denotes related angle. x1 and
x2 are set empirically (x1 ¼ 0:85 and x2 ¼ 0:15).

4. Event inference

Given a testing video sequence with objects tracking and iden-
tified, we should infer PðGÞ in a learned event And–Or graphs to
achieve an event recognition. In other words, we should search
each vertex (terminal node) ti in the video sequence so that the fol-
lowing probability (Eq. (6)) is maximized:
f temporal relations.



Fig. 6. Distance and angle between pair of event primitives.
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pðGÞ ¼ 1
Z
ðHÞPðTÞ

� exp
X
i2T

aa
i /

a
i ðtiÞ þ

X
hi;ji2V

bs
ijw

sðti; tjÞ þ bt
ijw

tðti; tjÞ
( )

ð11Þ

where PðTÞ is the prior term of graph structure and is defined on the
frequencies of all Or-nodes (Eqs. (2) and (4)). Therefore, PðTÞ can be
computed directly when inference, and we should only sample each
vertex following MRF model (single attributes constraint and pair-
wise relations constraint, as in Eq. (5)).

For each vertex, there will be several candidates by primitive
events detection (setting a lower threshold for wiðviÞ). Assume for
Fig. 7. Representative examples of event recognition. In this figure, different colors deno
motorbike, golden – unknown object), and yellow dashed box indicates event happening.
identified object and event happening respectively. The event ‘‘a coming pedestrian left
across zebra line where a pedestrian crossing” is in (b), and the event ‘‘a bicycle is dropp
detected in (c). (For interpretation of the references to color in this figure legend, the re
an unknown vertex ni, we have candidates set CandSeti ¼
fvigjCandSeti j

j¼1 , then the solution space contains
Q

ijCandSetij solutions.
It is a huge space, and we thus use Gibbs sampling to travel this
space. The computing algorithm is as follows:

Initialization: For each node ni, we initially set it as the primitive
event vi with the maximal /a

i ðtiÞ.
Gibbs sampling: We sort the nodes by the number of candidates

in ascending order, then use this order as the visiting order of
Gibbs sampling to accelerate the inference.

For each node ni with its neighbors nj 2 NðiÞ, we update it by
sampling

pðni ¼ tijnj ¼ tj8j–iÞ

/ exp �aa
i /

a
i ðtiÞ �

X
j2NðiÞ

bs
ijwi;jðti; tjÞ � bt

ijwi;jðti; tjÞ
( )

ð12Þ
5. Experiments

The proposed event representation approach was embedded in
an visual surveillance system, whose architecture is similar with
Collins et al. (2000).

We test the semantic event recognition on public LHI dataset
(Yao et al., 2007). We first learn parameters of event primitives
te different tracked object categories (green – pedestrian, red – car, blue – bicycle/
If this figure is not viewed by colors, note each solid box and dashed box indicate the
behind an unknown object (a suitcase)” is detected in (a), the event ‘‘a car is going
ing off a pedestrian” and event ‘‘ the pedestrian is entering a waiting car” are both
ader is referred to the web version of this article.)
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and spatio-temporal relations on a number of (more than 200)
common labeled event instances, as described in Sections 3.3 and
3.4. We then manually label specific event components for each
semantic event using those learned event primitives, and the
And–Or graph representations are built up, as described in Section
3.2. Based on these learned And–Or graph models, four representa-
tive events in both indoor and outdoor are parsed based on attri-
bute grammar following in inference algorithm in Section 4, as
shown in Fig. 7. The object category recognition is provided by sur-
veillance system, and different colors in this figure denote different
tracked object categories (green – pedestrian, red – car, blue –
bicycle/motorbike, golden – unknown object), and yellow dashed
box indicates event happening. The event ‘‘a coming pedestrian left
behind an unknown object (a suitcase)” was in Fig. 7a, the event ‘‘a
car is going across zebra line where a pedestrian crossing” is in
Fig. 7b, and the event ‘‘a bicycle is dropping off a pedestrian” and
event ‘‘ the pedestrian is entering a waiting car” are both detected
in Fig. 7c.

We show the quantitative results on recognition of 7 more
events, and the testing set of each is of size 400 event instances
(200 positive and 200 negative examples), and the lengths of event
video sequences are from 200 to 500 s frames, depending on the
event complexity. The recall precision and false alarm are shown
in Figs. 8 and 9.

Experiments are also performed to compare the proposed
method with the flat HMM model based method (Wilson and
Bobick, 1999) on two selected events, and the result is shown
in Fig. 9. The experiments are concerned on two events, namely,
‘‘A coming car is picking up a pedestrian” and ‘‘A watched object
is being stolen”. The proposed approach outperforms the HMM
based approach in recall precision and comparable in false alarm
rate, due to our approach accounts for events variations in both
temporal domain and event primitives compositions. For exam-
ple, in the event ‘‘A coming car is picking up a pedestrian”, it
can either be ‘‘the pedestrian stand still and then the car get
near to the pedestrian” or ‘‘the car stop and then the pedestrian
get near to the car”. The events model structure thus need to be
flexible and relations between the involved agents are modeled
explicit, as our approach, while the HMM-based methods are of-
ten fixed events temporal structure without explicit relations
definition.
6. Summary

In this paper, an attribute graph grammar is presented for event
representation and recognition. With this representation, one spe-
cific event can be represented by an ‘‘event parse graph”, and one
category of variable event can be modeled with an ‘‘event And–Or
graph”. We also illustrate event inference algorithm given a
learned event And–Or graph in a testing video. The experiments
show the event recognition on both indoor and outdoor video,
and quantitative results of recognition rate and false alarm on pub-
lic LHI dataset (Yao et al., 2007) are also presented to validate the
proposed approach.
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