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Abstract: The authors present a hierarchical Bayesian method for inferring the 3D structure of polyhedral man-
made objects from a single image by integrating 2D image parsing and 3D reconstruction. In the first stage, the
image is parsed into its constituent components – arbitrary shape regions and polygonal shape regions. In the
second stage, polygonal shape regions are grouped into man-made polyhedral objects. The 3D structures of these
polyhedral objects are further inferred using geometric priors. These two stages are integrated into a Bayesian
inference scheme and cooperate to compute the optimal solutions. This method enables the model to correct
possible errors and explain ambiguities in the lower level with the help of information from the higher level.
The algorithm is applied to the images of indoor scenes, and the experimental results demonstrate
satisfactory performance.
1 Introduction
Inferring 3D structures of objects from a single 2D intensity
image is a very difficult problem and has been a heavily
researched topic in computer vision for many years. There
are two major difficulties in this process. First, the intensity
value of a pixel in a 2D image does not provide enough
information by itself to determine which object it belongs
to. To extract an object, we must know how to group
related pixels into regions and then into objects by using
information such as smoothness, existence of
discontinuities and some high-level knowledge about the
scene and the objects involved. This segmentation problem
is the essential issue for most computer vision systems.
Second, no direct 3D shape information can be obtained
from a single intensity image. The process of projecting the
world into 2D discards information along the third
dimension. Therefore we must develop methods to recover
the lost 3D information from the remaining 2D information.

Because of these difficulties, many researchers addressing
this topic confine themselves to solving a simpler version of
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the problem. There are three main streams of research in
the literature:

Assuming the segmentation has been done and the result
is more or less perfect [1–4]: Although these methods differ
from each other in how to recover lost information from the
remaining 2D information (either using specific object
models or generic prior models), such as the classic ‘blocks
world’ [5], they assume the segmentation result is a reliable
separation of foreground objects from the background and
from each other. However, this assumption may not be true
in many cases.

Only using the intensity edges as input features for
perceptual grouping [6–9]: These methods extract and use
some intensity features (like edges) instead of the raw
image data. These features are then sequentially grouped
into more and more meaningful parts. However, this data
reduction process does not preserve all the information and
is prone to errors. In addition, these methods proceed
sequentially, so errors in the lower levels may propagate to
higher levels without any rectifications.
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Introducing human interaction [10–13]: These methods
ask the user to provide high-level information to help
feature extraction and grouping so that robust computer
vision algorithms can concentrate on performing the
geometric computations automatically.

It is clear that most of the existing methods either avoid the
segmentation problem altogether, like the first and third
streams, or perform sequential computing using reduced
data. Even as we begin to see more and more robust
segmentation algorithms, we should not expect any of them
to provide almost perfect results for all cases. In fact,
segmentation should not be separated from high-level
perception as human vision likely weighs both low-level
raw image data and different high-level representations
iteratively to explain possible ambiguities in the scene.
Besides, it is worthy mentioning a few recent work,
approaching some achievements in single-image-based 3D
inference. One method using multiple segmentations to
extract the structure of the outdoor scene and performing
3D reconstruction from a single image was presented by
Hoiem et al. [14], as well as its extensive studies [15]. Han
and Zhu [16] proposed a grammar-based inference
framework to parse a single scene into consistent patterns
and the 3D information can be inferred based on 3D-
attributed grammar rules.

Being different from those methods mentioned above, in
this paper, we present a two-level computation model to
extract 3D structures of objects from a single 2D image, as
illustrated in Fig. 1. In the first level, the image is parsed
into its constituent components – arbitrary shape regions
and polygonal shape regions. In the second level, these
adjacent polygonal shape regions are partitioned into many
groups, where each group corresponds to the visible exterior
of a man-made polyhedral object. The occluded 3D
structure of each proposed polyhedral object is then
inferred. The whole computation proceeds iteratively
instead of sequentially, integrating these two levels in a
Bayesian framework using data-driven Markov Chain
Monte Carlo. In this way, both bottom-up and top-down
information cooperate to compute the optimal solution.

2 Problem formulation
In this section, we present generative models for arbitrary
shape regions, polygonal shape regions and 3D polyhedral
objects. We also formulate the hierarchial inference in a
Bayesian framework. Fig. 2 illustrates the two types of
regions and the polyhedral objects we are working on.

2.1 Image representation with occlusion
model

Each arbitrary shape region R occupies an area D(R) bound
by its boundary contour, whereas each polygonal shape
region S occupies an area D(S) bound by the convex
The Institution of Engineering and Technology 2008
polygon it represents. We denote an image lattice by

L ¼ {(i, j): 0 � i � M , 0 � j � N }

Then each arbitrary shape region occupies all the pixels lying
inside D(R), which are denoted by LR. However, this is not

Figure 2 Two types of regions and the polyhedral objects

a Arbitrary shape regions
b Polygonal shape regions
c Polyhedral objects
d Possible occlusions

Figure 1 Two-level computation model to extract 3D
structures

a Input image
b Parsing the input image into its constituent regions
c Grouping regions into polyhedral objects and inferring their 3D
structures The arrows show that the whole computation is
iterative instead of sequential
IET Comput. Vis., 2008, Vol. 2, No. 1 pp. 15–22
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true for polygonal shape regions since they are often occluded
either by some arbitrary shape regions produced by
appearance patterns on top of them (like texts, textures) or
other neighbouring polygonal shape regions, as shown in
Fig. 2d. Putting all the regions with occlusion relations into
a set A, we define a partial order binary occlusion relation
W in this set, for example a W b means a occluding b.
The total occlusion relation is denoted by PR ¼ kA, W l.
Let LS denote the pixels occupied by a polygonal shape S
in the 2D discrete lattice L of image I. Then, LS are these
pixels inside D(S) minus the pixels covered by the
occluding regions, which are some polygonal shape region
S0 or arbitrary shape region R.

LS ¼ D(S)�<S0WSLS0 �<RWSLR

2.2 Generative models of arbitrary shape
regions

To model the arbitrary shape regions, we use the same image
model and boundary prior model as in [16].

1. Family I1: This is a uniform region with constant
reflectance Q ¼ m.

2. Family I2: This is a cluttered region with a non-parametric
histogram Q ¼ (h1, h2, . . . , hL) modelling its intensity with
L being the number of bins.

3. Family I3: This is a region with smooth variation of
reflectance, modelled by a B-spline model as in family D3.

Assuming the residuals from the fit to be modelled as
Gaussian noise, the likelihood probability is

p(IRjR, u)/
Y

(i, j)[LR

e�(I (i, j)�J (i, j;‘,u)), ‘ [ {1, 2, 3}

where J(i, j; ‘, u) is the fitting result according to model (‘, u).

The prior model for a region R assumes short boundary
length @R (smoothness) and compact area jD(R)j,

p(R)/ exp �grjD(R)ja �
1

2
lj@Rj

� �

where a and l are constants and gr is a scale factor for regions
and may vary slightly between different datasets.

2.3 Generative models of polygonal
shape regions

To model the polygonal shape regions, we use the same
image model as for arbitrary shape regions, but replace the
boundary smoothness prior model with a polygonal model
[17] defined by a set of vertex points with spatial
coordinates x!r and edges to form a contour. The vertices
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are modelled by a Poisson process with the probability

p( x!r ) ¼ (bA)ne�bA=n!, 1 � r � n

where n is the number of vertices, A is the area of the region
and b is the rate at which vertices appear in the image.

This polygonal model puts constraints not on the
smoothness, but on the complexity of the region
boundaries, which encourages polygonal shape regions since
the best region boundary is the one with the fewest points
that still approximates the data as well as other models.

2.4 Generative models of polyhedral
objects

Some polygonal shape regions can be grouped into an aspect
graph for one polyhedral object, whose 3D structure can be
inferred in a later step. We denote such a group by

P ¼ (n, S1, . . . , Sn)

where n is the number of polygonal shape regions in this
group and Sn represents each individual polygonal shape
region in the group. The 3D structure of the polyhedral
object corresponds to P and is denoted by a 3D graph
G ¼ (V, E, F ), which is represented by (1) V – 3D
vertices, (2) E – 3D edges and (3) F – surfaces with
intensity patterns. Visible surfaces inherit their intensity
patterns from their projection regions in P. We set the
intensity patterns for hidden surfaces to infinity.

To compensate the lost 3D information and infer 3D
structure in a single image, some prior knowledge of
polygonal structure is defined manually. Note we perform
3D perceptual inference but not exact geometrical 3D
reconstruction in this work.

The prior model for G is based on some prior geometric
regularities, defined on its faces and edges. For each face in
G, we have two constraints. The first constraint is planarity,
that is the edges of each face should lie on a 3D plane. For
each face in the polyhedron, fi , i ¼ 1, 2, . . . , jF j, assume it
has a number of 3D lines lij , j ¼ 1, 2, . . . ; ni . The planarity
for all fi of the polyhedra is enforced by an energy term

Eface
1 ¼

XjF j
i¼1

Xni
j¼1

1�
(li, j�1 � lij) � (lij � li, jþ1)

kli, j�1 � lijk klij � li, jþ1k

 !2

where . and � are inner and outer product, respectively.

The second regularity is that the inner angles of the face
should be more or less the same. The lengths of the edges
of the face should be roughly the same as well. Let uij,
j ¼ 1, 2, . . . ni be the inner angles of face fi. The regularity
17
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can be enforced by the following two energy terms

Eface
2 ¼

XjF j
i¼1

Xni
j¼1

1

ni
(uij � ūi)

2, ūi ¼
1

ni

Xni
j¼1

uij

Eface
3 ¼

XjF j
i¼1

Xni
j¼1

1

ni
(klijk � k�l ik)

2, k�l ik ¼
1

ni

Xni
j¼1

klijk

We also define the prior on all the edges E using the
following three regularities. First, all angles between all
pairs of edges meeting at each vertex must be similar. Let
uij, j ¼ 1, 2, . . . , ni be the angles between all pairs of edges
meeting at vertex i. This constraint can be enforced by the
following energy term

E
edge
4 ¼

XjV j

i¼1

Xni
j¼1

1

ni
(uij � ūi)

2, ūi ¼
1

ni

Xni
j¼1

uij

Second, the lengths of all the edges meeting at each vertex
must be similar. Let eij , j ¼ 1, 2, . . . , mi be all the edges
meeting at vertex i. This regularity can be enforced by the
following energy term

E
edge
5 ¼

XjV j

i¼1

Xmi

j¼1

1

mi

(keijk � k�eik)
2, k�eik ¼

1

mi

Xmi

j¼1

keijk

Third, the lengths of all the edges should be uniformly
proportional to those of their 2D projections. Let
ei, i ¼ 1, 2, . . . , jEj and e0i , i ¼ 1, 2, . . . , jEj be the edges
in 3D space and their 2D projections, respectively. In this
paper we assume the projection is either orthogonal or
perspective with the projection matrix known by using
methods in [10], so we can compute the 2D projection for
any W. Then this regularity can be enforced by the
following energy term

E
edge
6 ¼

XjEj
i¼1

1

jEj

keik

keik
� �r

� �2

, �r ¼
1

jEj

XjEj
i¼1

keik

keik

The prior model for one polyhedron is thus defined as

p(G)/ exp �
X6
i¼1

liEi

( ) !

Putting the hard constraint that the projection of the
polyhedral object is the same as the boundaries of all
the regular regions in P, G inherits the likelihood from the
regions it covers.

2.5 Bayesian formulation

Given an image I, our objective is to parse it into its
constituent components – polygonal shape regions W s and
arbitrary shape regions W r – with partial order PR, group
some polygonal shape regions into objects and infer the 3D
structure of these objects W g.
he Institution of Engineering and Technology 2008
Thus, a solution W is denoted by

W ¼ (W r , W s, Wg , PR)

The region representationW r includes the number of regions
K r, and each region Ri has a label ‘i [ 1, 2, 3 and parameter
ui for its intensity model

Wr
¼ (Kr , {(Ri , ‘i, ui): i ¼ 1, 2, . . . ,Kr})

Similarly, we have W s
¼ (K s, {(Si , ‘i, ui): i ¼ 1,2, . . . ,

K s}), Wg
¼ (Kg , G1, G2, . . . ,GKg ).

The problem is posed as Bayesian inference in a solution
space V.

W � ¼ arg max
V]W

p(I jW )p(W )

Except K r and K s combining to represent the total region
numbers of image I, we assume mutual independence
between Wr, Ws and Wg. Thus we have the prior model,

p(W ) ¼ p(Kr
þ K s)

�
YKr

i¼1

p(Ri)
YK s

i¼1

p(Si) p(Kg)
YKg

i¼1

p(Gi)

 !

The priors for individual p(R), p(S) and p(G) are given in the
previous subsections, whereas p(K r

þ K s) and p(K g) are
assumed to follow a Poisson distribution.

The likelihood model follows the lattice partition,

p(I jW ) ¼
YKr

k¼1

Y
(i, j)[LRk

e�(I (i, j)�J (i, j;‘,u))

�
YKs

l¼1

Y
(i, j)[LSl

e�(I (i, j)�J (i, j;‘,u)) ‘ [ {1, 2, 3}

3 Searching complex solution
space by Markov chain
Based on the previous formulation, we see that the solution
space V ] W contains many subspaces of varying
dimensions. To compute a globally optimal solution, we
design a two-level searching algorithm to get an optimal
solution on complex solution space using data-driven
Markov chain [18, 19]. An overview of the whole
algorithm is shown in Fig. 3.

3.1 Dynamics in the first level

In this level, we parse the image into polygonal shape regions
and arbitrary shape regions. Five types of MCMC dynamics
used in [20] are adopted to handle arbitrary shape regions:
diffusion of region boundary, splitting of a region into two,
merging two regions into one, switching the family of
IET Comput. Vis., 2008, Vol. 2, No. 1 pp. 15–22
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Figure 3 Overview of the two-level searching algorithm
models and model adaptation for a region. These dynamics
also work as in [20], where the jumps are sped up by some
bottom-up proposals.

To handle polygonal shape regions and their occlusions,
we use the following three dynamics:

1. Diffuse the boundary of polygonal shape regions. To
diffuse the boundary of a polygonal shape region, we move
each edge segment along the boundary rigidly. This is
different from diffusing each node on the boundary freely
for arbitrary shape regions. To do this, we discretise each
edge segment into many nodes. Then we compute the
movement for each of these nodes as for an arbitrary shape
region. Finally, all these movements are propagated to the
two ending vertices of this edge segment. One example is
illustrated in Fig. 4.

2. Switch between arbitrary shape region and polygonal
shape region: At each iteration of the computation, an
arbitrary shape region can become a polygonal shape region
with some occluding arbitrary shape regions on the top of
it. Similarly, a polygonal shape region may turn out to be a

Figure 4 One part of the boundary of a polygonal shape
region, B, is diffused to a new one B0
Comput. Vis., 2008, Vol. 2, No. 1, pp. 15–22
10.1049/iet-cvi:20065002
worse explanation of the image than its alternatives, and
can release its boundaries to become an arbitrary shape
region. This dynamic is illustrated in Fig. 5.

3. Reversible jumps for adding/removing a partial order a, b
element in the spatial relation set PR

PR()PR þ =� {(a, b)}

Or reversing the order

(a, b)() (b, a)

When an arbitrary shape region is switched into a polyhedral
shape region, we have to add the occlusion relations it
produces. Oppositely, if one polyhedral shape region is
switched into one arbitrary shape region, we have to delete
the occlusion relations connected with it. We can also
switch the direction of an occlusion relation at each step.

3.2 Dynamics in the second level

3.2.1 Grouping polygonal shape regions into
polyhedral objects: This next dynamic is very
important because it acts as the connection between the

Figure 5 The arbitrary shape region R can switch into a
polygonal shape region S and vice versa
19

& The Institution of Engineering and Technology 2008



20

& T

www.ietdl.org
two representational levels. On one hand, it should be
reversible to make the whole computation model reversible.
On the other hand, it should efficiently communicate data
between our two computational levels. We adopt the
Swendsen–Wang cut algorithm [21], which can efficiently
perform perceptual grouping based on some bottom-up
heuristics. The bottom-up heuristics used here are
computed by line labelling, which tries to label each
boundary of each polygonal shape region as convex
boundary, concave boundary or occluding boundary. These
labellings can be used to propose how likely it is that two
neighbouring regions are grouped into one object based on
the fact that two regions sharing a convex boundary have a
higher probability of being on the same object, whereas two
regions sharing an occluding boundary have a higher
probability of being from two different objects.

3.2.2 Infer the 3D structure of polyhedral objects:
After grouping polygonal shape regions into individual
polyhedral objects, we try to infer the 3D structure of each
object for both the visible and hidden parts. Even though
the hidden parts of each surface created by occlusions
between neighbouring objects have been recovered by
extracting all the polygonal shape regions in the first level,
we have to infer the hidden structure caused by self-occlusion.

To see what we should do in this computation process, we
separate the 3D graph G for each object into visible parts
GVisibleParts and hidden parts GHiddenParts, and start with
GHiddenParts being set to a single face, making the object
spatially closed. Assuming orthographic projection, we only
compute the z values for vertices in GVisibleParts to infer the
3D structure of visible parts. But for GHiddenParts, we
should do one more thing: infer the topology of
GHiddenParts, which determines the number of vertices,
edges, faces for the hidden structure and how they are
organised. These two tasks can be accomplished by jump
and diffusion dynamics, respectively.

To shed further light on how the jump dynamics work
on the topology of GHiddenParts, we show two examples in
Fig. 6. From Fig. 6 we can see that, to obtain the correct

Figure 6 Two examples are used to show how the
topologies should change to achieve the correct result
he Institution of Engineering and Technology 2008
reconstruction results for the two objects in the figure, the
topology of GHiddenParts should be changed from the left
interpretation to the right one. It is clear now that to
achieve the goal of changing the topology of GHiddenParts,
the jump dynamics can proceed by either splitting an
existing face into two or merging two faces into one. Thus,
the following dynamics are used:

1. Split an existing face in GHiddenParts into two faces by
either connecting two existing vertices in GHiddenParts or
inserting a new vertex and connecting it to other two
existing vertices. At state WA, the topology of the hidden
structure has one face and three candidates are listed for
splitting this face. One of the candidates is proposed
probabilistically and we obtain state WB. At WB one
candidate can be used for merging. Fig. 7 shows an
example of this jump between two states WA and WB

WA ¼ (W, fik, Vi, Ei)O (W, fim, fin, V
0
i , E

0
i) ¼ WB

2. Merge two faces in GHiddenParts into one.

3. Diffuse z values for both visible and inferred hidden
vertices

Each reversible jump connects two states WA and WB and
observes the detailed balance equation

p(WAjI ) dWA P(WA ! dWB) ¼ p(WBjI ) dWB

� P(WB ! dWA)

where p(WAjI ), p(WBjI ) are the posterior probabilities and
for WA =WB

P(WA ! dWB) ¼ q(WA ! dWB)a(WA ! WB)

is the transition (conditional) probability fromWA toWB, and
q( ) and a( ) are, respectively, the proposal and acceptable
probabilities. A good design of the proposal probability is
crucial to speed up the search and two recent successful
examples of proposal probabilities come from [16, 18],
which design the proposal probability from bottom-up
heuristics B(I ): q(AjB, D(I )) ’ p(AjI ) and q(BjA, D(I )) ’
p(BjI ). This produces an acceptance probability close to
one.

Figure 7 Example of the split-merge jumps used to infer the
hidden structures of polyhedral objects
IET Comput. Vis., 2008, Vol. 2, No. 1 pp. 15–22
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However, designing a good q for the dynamics that recover
the hidden structure is challenging because we have no
directly observed data to use. Some geometric rules that
human beings often use to represent hidden information
are introduced here to produce a good q and act as

Figure 8 Three rules are used to propose a new vertex V

a Mirror symmetry
b Rotational symmetry
c Parallelism

Figure 9 3D inference on indoor real images

a Two input images
b Two corresponding segmentation results, in which polygonal
shape regions and their occluding regions are displayed in red
c 3D structure of polyhedral objects
d Objects with different viewing position
Comput. Vis., 2008, Vol. 2, No. 1, pp. 15–22
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high-level knowledge. These geometric rules are
parallelism, rotational symmetry and mirror symmetry,
which are often present in 3D objects. Fig. 8 shows
how these rules can be used to propose a new vertex added
to GH.

4 Experimental results
We tested the two-level hierarchy computation model on two
real indoor images, as shown in Fig. 9a. To highlight the
computed polygonal shape regions in the segmentation
result, the boundaries of these polygonal shape regions and
the regions occluding them are displayed in red (Fig. 9b).
The final 3D structures inferred for the polyhedral objects
in the two examples are shown in wireframe format in
OpenGL, as shown in Figs 9c and d with different view
position. Although our main goal is to extract the 3D
structures of polyhedral objects in the image, it is clear that
the segmentation results are greatly improved at the same
time, since the 3D perception can help explain many
ambiguities in the segmentation.

5 Summary and future work
In this paper we propose a two-level hierarchical Bayesian
computation model for extracting 3D structure from a
single image. This hierarchical model is reversible and thus
can correct possible errors at lower levels to achieve a global
optimum. Currently, we infer the 3D structure of objects
individually without considering the spatial relation
between them. In reality, objects are organised in a scene
with strong spatial regularities, which provide more
constraints to recover the lost 3D information. We will add
this to the current computational model in the future.
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