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Abstract

This paper presents a cross-based framework of per-

forming local multipoint filtering efficiently. We formulate

the filtering process as a local multipoint regression prob-

lem, consisting of two main steps: 1) multipoint estima-

tion, calculating the estimates for a set of points within a

shape-adaptive local support, and 2) aggregation, fusing

a number of multipoint estimates available for each point.

Compared with the guided filter that applies the linear re-

gression to all pixels covered by a fixed-sized square win-

dow non-adaptively, the proposed filtering framework is a

more generalized form. Two specific filtering methods are

instantiated from this framework, based on piecewise con-

stant and piecewise linear modeling, respectively. Leverag-

ing a cross-based local support representation and integra-

tion technique, the proposed filtering methods achieve the-

oretically strong results in an efficient manner, with the two

main steps’ complexity independent of the filtering kernel

size. We demonstrate the strength of the proposed filters in

various applications including stereo matching, depth map

enhancement, edge-preserving smoothing, color image de-

noising, detail enhancement, and flash/no-flash denoising.

1. Introduction

Edge-preserving or structure-preserving smoothing fil-

tering is a desired property and a key component for many

computer vision and graphics applications. Basically, the

goal of edge-preserving smoothing filtering is to separate

the main signal/image structures from the measurement

noise or fine details, whereby the structure/edge should be

well preserved and small fluctuations are smoothed out.

From a general perspective, the signal to be filtered can take

different forms such as an input color image with additive

noise [8], or a cost slice/volume typically constructed in dis-

crete labeling tasks (e.g., stereo [18]). Likewise, the struc-

ture used to guide the filtering process can also be defined in

a broad way. For instance, the structure encoded in the in-

put color image itself, or that in another guidance signal of

high signal-to-noise ratio (SNR) aligned to the filter input.

The latter case is also known as joint or cross filtering [12].

∗This work was done when Keyang Shi was an intern at ADSC.

The bilateral filter (BF) [15] is arguably the most popular

edge-preserving smoothing filter that is widely adopted in a

variety of applications [11]. As a local, non-iterative filter,

BF is intuitively simple. Using a range parameter σr and

a spatial parameter σs, BF decides an adaptive weight for

each point within a local square window. The final filtering

output for the center pixel is simply computed as a weighted

average of these neighboring pixels. Based on the taxonomy

by Katkovnik et al. [7], BF is a local pointwise estimator

in that it gives the estimate for a single point only i.e., the

center pixel. BF uses a piecewise constant modeling where

a zero-order local polynomial approximation is applied.

Recently, the guided filter (GF) [6] was proposed. Being

computationally much faster than BF, GF has also demon-

strated its unique advantage over BF in some applications

such as detail enhancement and HDR compression. More-

over, when applied to cost volume filtering (e.g., stereo

matching), GF has achieved state-of-the-art results among

local stereo methods [14]. Though the authors did not make

it explicit in [6], GF is essentially a local multipoint esti-

mator according to [7]. In such a case, the estimates are

calculated for all observation points used by the estimator.

Since typically a number of such estimates are available for

each point, they are aggregated (fused) together to compute

the final estimate. This sort of redundant approximations

with multiple estimates for each point is found to be drasti-

cally better than any of the windowed estimates [7]. Unlike

BF, GF performs a first-order local linear modeling.

Inspired by the strong theoretical development in the

image denoising field [7], we cast general-purpose edge-

preserving smoothing filtering under a novel and broad

framework of local multipoint filtering. Providing new the-

oretical understandings and extensions, the proposed frame-

work comprises two major steps: 1) multipoint estimation,

calculating the estimates for a set of points within a shape-

adaptive local support, and 2) aggregation, fusing a num-

ber of multipoint estimates available for each point. Us-

ing spatial adaptivity to define local support regions and

weighted averaging to fuse multiple estimates are two key

generalizations in the proposed framework. Therefore, GF

is a special instance of this framework in that fixed-sized

square windows and simple averaging for multi-estimate fu-
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Figure 1. GF [6] does not remove the noise near the edges well,

while the proposed filtering method does a much better job. All

the parameters in both algorithms have been fairly set.

sion are employed. Further, we propose two specific edge-

preserving filters as novel instantiations from this generic

framework, using a piecewise constant and piecewise lin-

ear approximation respectively to model the signal locally.

They demonstrate better functional performance than GF

and BF in a range of computer vision and graphics tasks.

By leveraging and generalizing the cross-based local sup-

port decision and integration technique [19], the proposed

filters perform the zero-order or first-order local polyno-

mial modeling over pointwise-adaptive support regions ef-

ficiently. The two major steps’ complexity is independent

of the filtering kernel size, based on the integral image tech-

nique [4]. Also accommodating GF, our framework is ver-

satile and can be flexibly configured to give the best variant.

2. Related Work and Motivation

Interested readers are referred to [11, 7, 6, 14] for a de-

tailed review of edge-preserving smoothing filters and local

multipoint filtering, covering both theory and applications.

Here we focus on three most relevant filtering techniques.

Due to the edge-preserving smoothing property as well

as its simplicity, BF [15] has been effectively employed in

many applications [11]. However, because of the piecewise

constant modeling used, BF generates the staircase effects

in image smoothing operations [3]. Another known issue

is the gradient reversal artifacts, caused by insufficient lo-

cal support around transitional edges [6]. Computational

efficiency is yet another challenge. As pointed out in [6],

quantization-based fast implementations [13, 17] achieve

satisfactory speed at the cost of quality degradation.

Cross-based local support decision and fast cost aggrega-

tion method were proposed in the context of stereo match-

ing [19]. Based on a compact, pixel-wise varying local

cross representation, the matching costs can be aggregated

over a shape adaptive full support region using two orthogo-

nal integration steps in O(1) time [4]. This method achieves

����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������

p
pΩ

k

���

kΩ

����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������

k

�����������������������������������������������������������
�����������������������������������������������������������
�����������������������������������������������������������
�����������������������������������������������������������
�����������������������������������������������������������
�����������������������������������������������������������
�����������������������������������������������������������
�����������������������������������������������������������
�����������������������������������������������������������
�����������������������������������������������������������

'k

pΩ

pkΩ

s

'kΩ

���

k

r

r

2

ph 0

ph

1

ph

q
2

qh 0

qh

pW
3

ph���
pΩ

p)(pH

)(qH

)(pV

Figure 2. Cross-based local multipoint filtering. (a) Multipoint

estimation for the local region Ωp anchored at point p. (b) Aggre-

gation of multiple estimates contributed by each k ∈Ωp. (c) The

proposed multi-estimate fusion approach deals with the concave

structure better than using the single estimate from p alone [19].

the comparable disparity accuracy with the adaptive-weight

method [18], but runs dozens of times faster. Later, this ef-

ficient and effective cost aggregation method has also been

adopted as a fundamental building block in the top-ranking

stereo method [9]. However, other than stereo, its appli-

cations to other problems have not been well explored yet.

Also, the pointwise estimate based on hard weighting may

not be fine enough for several graphics applications.

As a special case of more general local multipoint es-

timators [7], GF [6] has shown its quality and speed ad-

vantages over BF. It has also been successfully applied to

fast cost volume filtering [14]. However, GF is not without

problems. First, the local linear modeling becomes very in-

effective, when more than one models are present in most

of the local windows covering the point to be filtered, as GF

does not classify the local samples discriminatively into a

few classes. Also, when the true signal is actually charac-

terized by sharp transitions (e.g., depth discontinuities), GF

results in undesired fuzzy object boundary in applications

like depth map enhancement. From a perspective of statis-

tics, it is clear that GF simply averages multiple estimates

for the center pixel equally, without using any notion of lin-

ear regression quality or quality-of-fit for weighted fusion.

Without spatial adaptivity, GF cannot be easily adapted to a

piecewise constant model for the speed or quality purposes.

Fig. 1 shows the deficiency of GF in denoising a color im-

age, and we will discuss the reason and insights in Sect. 3.5.

3. Cross-Based Local Multipoint Filtering

3.1. Definition and Algorithm Overview

Before presenting the proposed filters, we first define the

following notations. The signal/image to be filtered is de-

noted as Z, the guidance image as I , and the filter output

image as Y . Note that I and Z can be identical, if the guid-

ance image is the filter input itself. Let p be the pixel index

of the estimation point, and k be an observation point or

support pixel used by the estimator. As shown in Fig. 2(a),

k ∈ Ωp ⊆ Wp, where Ωp delineates an arbitrarily-shaped,

connected local support region for anchor point p, based on

some criteria (e.g. [19]). Wp is a square window of a radius
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r, defining the maximum spatial extent as in GF [6].

The proposed cross-based local multipoint filtering

(CLMF) framework consists of a few stages. First, for each

pixel p, a set of four varying support arm lengths are decided

on the guidance image I , i.e., {h0
p, h

1
p, h

2
p, h

3
p}, the so-called

cross skeleton in [19]. We will present an improved strategy

for adaptive scale selection in Sect. 3.3. Once such a pixel-

wise cross skeleton is decided, a shape-adaptive full support

region Ωp is readily available as an area integral of multiple

horizontal segments H(q) spanned by pixel q [19]. Specif-

ically, Ωp =
⋃

q ∈V (p) H(q), where q is a support pixel lo-

cated on the vertical segment V (p) defined for pixel p, as

shown in Fig. 2(a). After this preprocessing stage, CLMF

performs two main filtering steps sequentially: 1) multi-

point estimation, calculating the estimates Y k
s for a set of

points s ∈ Ωk within a locally adaptive region anchored on

point k, and 2) aggregation, fusing all the estimates {Y k
p }

derived from each k-centered local region (k ∈ Ωp) to com-

pute the final estimate (filter output) Yp for each point p.

3.2. Generalization of Local Multipoint Filtering

Assuming a pixel-wise shape-adaptive support region Ωp

for each point p is given, we first present a generalized

framework of local multipoint filtering here. Extending the

local linear model adopted in GF [6], a local polynomial of

order m is fit between the guidance Is (independent vari-

able) and the observations Zs with s ∈ Ωk, for each an-

chor pixel k. We denote the fitted coefficient vector with

a
m
k = [a0

k, a1
k, ..., am

k ]. In this paper, we only consider the

cases of m ≤ 1, so the zero-order (m = 0) or first-order

polynomial model (m = 1) for each s ∈ Ωk is given as

Y k
s = a

m
k I

m
s =

{

a0
k m = 0

a0
k + a1

kIs m = 1 .
(1)

where I
m
s = [1, Is, ..., I

m
s ]T . Similar with GF, we use the

method of least squares to fit the data, while enforcing that

the model should be biased toward low-order polynomials

to avoid over-fitting and gradient increase. Specifically, we

minimize the following quadratic function:

E(am
k ) =

∑

s∈Ωk

((am
k I

m
s − Zs)

2 + ǫ
∑

i∈[1,m]

(ai
k)2) . (2)

ǫ is a regularization parameter to discourage the choices of

large ai
k (i≥1). When m=0, the solution to (2) is given by

a
0
k ≡ a0

k = Z̄k =
1

|Ωk|

∑

s∈Ωk

Zs , (3)

where |Ωk| is the number of pixels in Ωk. When m = 1, the

linear coefficients a
1
k = [a0

k, a1
k] are given as follows,

a1
k =

1
|Ωk|

∑

s∈Ωk
IsZs − µkZ̄k

σ2
k + ǫ

, (4)

a0
k = Z̄k − a1

kµk , (5)

where µk and σ2
k are the mean and variance of I in Ωk. Z̄k

is the mean of Z in Ωk as given in (3). To generalize (4,5)

to the case of a color guidance image, the 3×3 covariance

matrix Σk and color vectors (e.g., Is) are used as in GF [6].

In contrast to a pointwise estimator (e.g., BF) that gives

the estimate for the center pixel k only, the multipoint esti-

mator here is to calculate an estimate Y k
s for all observation

points used, i.e., s ∈ Ωk. For a given pixel p, as it is gener-

ally covered by multiple overlapping regions, it is involved

in their respective linear regressions. It hence has a num-

ber of multipoint estimates {Y k
p | p ∈ Ωk}. Different from

GF [6] where these multipoint estimates are simply aver-

aged together to compute the final estimate Yp, the proposed

CLMF framework takes into account of the fitting quality or

the confidence of each multipoint estimate in the aggrega-

tion process. Specifically, the final estimate for each pixel is

given as a weighted average of these multipoint estimates:

Yp =

∑

k:p∈Ωk
wkY k

p
∑

k:p∈Ωk
wk

, (6)

where wk is the relative weight associated with each mul-

tipoint estimate Y k
p . As Ωk is intended to involve only the

data points (inliers) that follow the similar signal structure

or distribution in I [19], the outliers in the local square win-

dow Wk are rejected effectively. Therefore, the fitting error

(residue) at every point s ∈ Ωk can be considered as i.i.d.

Gaussian noise, i.e., Zs =Ys+ηs, ηs∼N(0, γ2). Normally,

more data points (inliers) lead to a statistically more stable

estimate of the true signal, as the random estimation error

decreases. We hence set the value of wk in (6) proportional

to the number of sample points |Ωk|, though more sophis-

ticated methods to decide wk exist [7]. As a result, the ag-

gregation of all multipoint estimates for pixel p is given by

Yp =

∑

k:p∈Ωk
|Ωk|Y

k
p

∑

k:p∈Ωk
|Ωk|

. (7)

For more regular computation and data access patterns, it

is advantageous to transform the summations in (7) into the

following p-pixel centric summations approximately:

Yp ≈

∑

k∈Ωp
|Ωk|Y

k
p

∑

k∈Ωp
|Ωk|

. (8)

Note that the above transformation may not lead to exactly

the same final estimate as in (7). The reason is that for a

more general way of defining Ωk/p, the mutual membership

may not always hold, though most of time it does. More

precisely, there could exist that p ∈ Ωk, but k /∈ Ωp, or

sometimes k ∈ Ωp, but p /∈ Ωk (e.g., k′ in Fig. 2(b)). As

discussed later, with this transformation, the multipoint es-

timate fusion process can be accelerated in the same way

as the linear regression process for each support region [6].

For GF, as the mutual membership is decided symmetrically

by requiring ||p−k||∞ ≤ r, (8) gives the same result as (7).
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Figure 3. 1-D illustration for the reason and solution for gradient

reversal artifacts. (a) Unbalanced arm lengths, making the linear

regression biased to the green points. (b) Symmetric arm lengths.

3.3. Adaptive Scale Selection

The goal of adaptive scale selection is to decide for each

direction an appropriate arm length, so they jointly delineate

a shape-adaptive local support region [7]. Unlike the origi-

nal cross-based method [19] where Ip is used firmly as the

reference value for color similarity evaluation, we update

it by the running average of the intensity of all the pixels

covered by the current span h. This change makes the scale

decision more robust against the measurement noise and the

scales more extensible. Consider the right arm h0
p for pixel

p=(xp, yp). The proposed updating function is given as

Î(h)
p = (1 − α)Î(h−1)

p + αIp+(h,0) , (9)

where Î
(0)
p = Ip. α is a parameter to control the updating

rate. With an initial value set to 0, the optimal right arm

length is decided as the largest right span h∗ ∈ [1, r] that

satisfies the following requirements:

∀j ∈ [1, h∗], δ(Ip+(j,0); Î
(j−1)
p , τ) = 1 ,

and δ(Ip+(h∗+1,0); Î
(h∗)
p , τ) = 0 .

(10)

r is the preset maximum scale (window radius). As in [19],

δ(Is; It, τ) measures the color similarity based on all color

bands. If maxc∈{R, G, B} |I
c
s − Ic

t | ≤ τ , then δ(Is; It, τ) =
1, otherwise 0. Instead of deciding the scale for each color

channel separately, this method decides the scale by using

three color channels jointly. This addresses the issue when

edges are not discriminable in any single color channel. Fi-

nally, we set the right arm length h0
p = max(h∗, 1), enforc-

ing a minimum support scale for reliable regression.

When m = 0 or in other words, the zero-order poly-

nomial model is used (named CLMF-0 hereinafter), we set

α = 1/(h + 1) in (9). This is consistent with the piecewise

constant assumption made for the regression in (3). Differ-

ent from [19] that firmly takes Ip as the reference value in

(10), our method considers Ip only as a noisy measurement

of the ideal unknown signal, which remains to be estimated.

When m = 1, the first-order polynomial model is used

(named CLMF-1 hereinafter). We set α to a fixed value

(e.g., 0.5) to allow fast spatial updating. This leads to a

desired property of being able to extend the scale in gradient

regions, so more pixels are involved for reliable regression.
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Figure 4. 1-D step edge linking two (a) piecewise constant regions

or (b) piecewise linear regions. To filter the point p, CLMF-0 and

CLMF-1 only use the multipoint estimates from points k ∈ Ωp.

However, if the CLMF-1 filter is directly applied to detail

enhancement, we still noticed the gradient reversal artifacts

as the BF usually has [6]. The origin of these artifacts can

be explained by a 1-D signal that contains a ramp edge in

Fig. 3. Given a pixel p (red) on the transitional edge, its

left arm length is decided as h2
p (i.e., covering all the green

points), while its right arm length is h0
p (i.e., covering all the

blue points). It is clear that the numbers of the data points

on the two sides of pixel p are very unbalanced, where there

are much more points k such that Ik ≤ Ip than the number

of points satisfying Ik ≥ Ip. If the linear regression in (4,5)

is computed based on all these data points, the regression re-

sults will be more biased to the left side, as shown in the in-

set of Fig. 3(a). Thus, the final estimate Yp at pixel p is much

smaller than Ip, so boosting this difference ends up causing

an upward hump in the enhanced signal at p. Similarly, a

valley is created for the pixel p′ (orange). This is known

as the gradient reversal artifacts [6]. We also find that the

above analysis is quite similar to the geometrical interpreta-

tion of the staircase effect by Buades et al. [3]. To address

this issue caused by the asymmetric arm lengths while still

keeping the advantage of the scale adaptation, this paper

proposes to set the horizontal and vertical arm lengths sym-

metrically to the lower length, i.e., h̃0
p = h̃2

p = min(h0
p, h

2
p),

and h̃1
p = h̃3

p = min(h1
p, h

3
p). The symmetric arm lengths

use more balanced numbers of points from both sides of p
for the linear regression, which tends to preserve the initial

intensity Ip much better. This method effectively avoids the

gradient reversal artifacts as shown later in Fig. 12.

3.4. Edge- and Gradient-Preserving Filtering

CLMF-0 and CLMF-1 have the edge-preserving smooth-

ing property. This can be explained by an example of a 1-D

step edge in Fig. 4. As presented in Sect. 3.1, for every pixel

p, a shape-adaptive local region Ωp, without straddling step

edges, is first constructed. Local multipoint filtering is then

performed based on Ωp. As a result, the pixels (e.g., k′) on

the other side of the step edge are not (or rarely) used in

the linear regression (or smoothing) process. In CLMF-0, τ
controls the smoothing strength by deciding the neighbor-

ing pixels involved in (3). It has a similar effect as the range

variance σ2
r in BF [15]. For CLMF-1, τ is set to classify the

neighboring pixels and only the points within Ωp are used
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(a) (b) (c)

(d) (e) (f)

Figure 5. Edge-preserving smoothing results by CLMF-0 (top

row, r=8) and CLMF-1 (bottom row). (a) Input gray-scale image.

(b) τ =25/255. (c) τ =50/255. (d) Input color image. (e) r =9,

τ =50/255, ǫ=0.15
2. (f) Edges on (e) for a stylized effect [16].

for the linear regression. As in GF, ǫ decides the smoothing

level for these selected pixels. It is typically set based on the

expected noise/detail level. The edge-preserving smoothing

results of CLMF-0 and CLMF-1 are shown in Fig. 5.

Not only an edge-preserving smoothing filter, CLMF-1

also has the desired property of preserving image gradients.

When m = 1, (8) can be rewritten as: Yp = ā1
pIp + ā0

p,

where ā1
p =

P

k∈Ωp
|Ωk|a

1

k
P

k∈Ωp
|Ωk|

, and ā0
p =

P

k∈Ωp
|Ωk|a

0

k
P

k∈Ωp
|Ωk|

. Thanks

to the symmetric arm length constraint enforced in Sect. 3.3,

the derived linear coefficients [a1
k, a0

k] become much more

reliable and less biased. As the low-pass averaging output

of these reliable coefficients, ā1 should have much smaller

gradients than that of I near strong edges. This means

∇Y ≈ ā1∇I , and the gradients in I is better preserved.

3.5. Limitations of Guided Filter

Unlike the proposed CLMF-1, GF makes a strong as-

sumption that a single linear model is sufficient to model a

local patch Wp centered at pixel p [6]. However, consider

the case that I = Z, if the guidance image I has a high

local variance in Wp, then the linear coefficients [a1
p, a

0
p]

become very close to [1, 0]. This essentially means that Zp

just keeps its original measurement value without smooth-

ing. Therefore, for the points close to a high-contrast edge,

they do not undergo sufficient smoothing due to the single

model assumption (recall Fig. 1). Let’s consider such an ex-

ample in Fig. 6(a). GF achieves strong smoothing for pixel

p, only when it is contained in a (shifted) window without

involving pixels from the object A. The upper-left corners

of these “good” windows are denoted in orange, while their

corresponding window centers k are marked in yellow (i.e.,

region Up). In the end, GF simply aggregates all the multi-

point estimates for p using unweighted averaging. This low-

pass filtering uses far more un-smoothed values Zp from the

windows centered in the region of Wp\Up than Y k
p from

those good windows with k ∈ Up. Hence, this results in
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Figure 6. (a) GF does not smooth regions near high-contrast edges

or high-variance regions. (b) CLMF-1. See the text for details.

insufficient smoothing or denoising for p. In contrast, as

shown in Fig. 6(b), CLMF-1 avoids the high-contrast edge

thanks to its support scale adaptation, so the linear regres-

sion performance is not affected by the irrelevant points be-

longing to the object A. Furthermore, we use the weighted

average to aggregate all the multipoint estimates from the

windows centered at k, with k ∈ Ωp. This further en-

sures that more confident estimates (defined based on |Ωk|
in this paper) have a higher influence on the final filter out-

put for p. While preserving high-contrast edges, CLMF-1

also smooths out noise or details in the regions nearby.

Another issue with GF is that it may generate fuzzy ob-

ject boundaries in the resulting filter output Y , if the true

signal underlying the input signal Z actually has a sharp

transition here. Such an artifact can be most visible in depth

map enhancement (see Fig. 9), and it is known that the ac-

curacy along depth discontinuities is very important for sev-

eral applications. This artifact is due to the reason that GF

performs the piecewise linear regression that involves all the

pixels covered by a local window. So, it is particularly prob-

lematic in preserving sharp depth edges, if the color contrast

across a depth edge is not high. Instead, using a low-order

fitting in shape-adaptive support regions, CLMF-0 can sig-

nificantly improve the recovery quality for sharp step edges

in the input signal Z, without causing blurry boundaries.

3.6. O(1) Time Linear Regression and Aggregation

As detailed in [19], the integration of raw stereo match-

ing cost or intensity over a shape-adaptive local region can

be performed efficiently in O(1) time. This means that the

time complexity is independent of the window radius r.

This is actually thanks to the connectivity constraint made

when constructing pixel-wise cross support skeletons. As

a separable filter, the integration over a 2-D irregularly-

shaped region (3) can be exactly and also efficiently com-

puted by the integral image technique [4]. To normalize

the integration result by the varying sample number covered

by Ωk in (3), one 2-D integration is also needed to com-

pute |Ωk| in O(1) time. As CLMF-0 augments [19] with

a multipoint aggregation step as in (8), this step requires

only two additional 2-D integrations in the same way. In to-

tal, only four O(1)-time 2-D integrations over cross-defined

support regions are needed in CLMF-0, for both gray-scale
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Table 1. Summary of the comparison between CLMF-0, CLMF-1 and other filters

Filter Local modeling Multipoint est. Soft kernels Edge/Grad. preserving Explicit support Speed

BF [15] Piecewise constant Pointwise Y Only edge Without Slow

CLF [19] Piecewise constant Pointwise N Only edge With Very fast

CLMF-0 Piecewise constant Multipoint Y Only edge With Very fast

GF [6] Piecewise linear Multipoint Y Edge & gradient Without Fast

CLMF-1 Piecewise linear Multipoint Y Edge & gradient With Fast

(b) (c) (d) (e)(a)

Figure 7. Filter kernels for (a) different image patches computed

by (b) BF (σs = 9, σr = 0.1), (c) CLMF-0 (τ = 30/255), (d) GF

(ǫ = 0.12), (e) CLMF-1(τ = 30/255, ǫ = 0.12), all with r = 9.

and color guidance images. In comparison, for a gray-scale

guidance image, both GF and CLMF-1 need to compute the

second-order moments, thus requiring seven and eight O(1)-

time 2-D integrations, respectively. For RGB guidance im-

ages, far more numbers of O(1)-time 2-D integrations are

needed in addition to intensive vector arithmetic involved

for each pixel, so they run noticeably slower than CLMF-0.

3.7. Connection with Other Filters

Table 1 summarizes the comparison between the pro-

posed CLMF filters with other popular filters. Based on the

fundamental assumption made about local patches, these

filters can be categorized into two main classes: piece-

wise constant local modeling and piecewise linear local

modeling. For the filters using piecewise constant model-

ing, they usually cannot preserve the image gradient infor-

mation well. Without an aggregation step that adaptively

fuses multiple estimates as adopted in CLMF-0 and CLMF-

1, the original cross-based local filtering (CLF) [19] does

not achieve a soft filter kernel of spatially varying support

weights. This is due to the hard decision of support scales

and absence of a soft range kernel. One advantage associ-

ated with all cross-based filters is that an explicit support

region Ωp mostly involving confident inliers is defined for

every pixel p. As shown later, this region can be effectively

reused in some applications such as refining stereo match-

ing results. Representing such a locally adaptive support

region is also memory efficient, as only four bytes per pixel

are needed to store the four arm lengths [19]. Compared

Table 2. Middlebury stereo evaluation results (as of Dec. 2011)

Method Rank Avg. error % Avg. time

CLMF-1 12 5.13 3.9 sec

CLMF-0 15 5.24 1.0 sec

CostFilter (GF) [14] 17 5.55 3.7 sec

P-LinearS (GF) [5] 21 5.68 33 sec

AdaptWeight (BF) [18] 51 6.67 60 sec

Var.Cross (CLF) [19] 64 7.60 0.9 sec

with GF, the proposed CLMF framework is a more gener-

alized form. It performs either the linear regression or local

averaging over a shape-adaptive support region, rather than

within a fixed-sized square window. Besides the functional

strength, CLMF-0 and CLMF-1 gain the computational ef-

ficiency similarly from the integral images technique as in

GF [6]. However, GF does not support piecewise constant

local modeling natively. Fig. 7 shows the filter kernels com-

puted for different patches all extracted from real images.

CLMF-1 defines the weights quite similar to GF. Even just

using a hard scale decision and hard weighting in the first

step, CLMF-0 achieves soft weights after the aggregation

step, which are visually better than BF at certain locations.

4. Applications and Experimental Results

This section presents various computer vision and graph-

ics applications of the proposed CLMF-0 and CLMF-1.

4.1. Stereo Matching

The accuracy of local stereo methods is highly depen-

dent on the cost aggregation schemes used. As prior meth-

ods that employ BF [18] and GF [14] for cost aggregation,

CLMF can also be applied to filter the cost volume while

preserving edges. First, the pixel-wise raw matching cost is

defined by the sum of an absolute color difference and the

Hamming distance of two census transforms [9]. To allow

the cross arms to extend in regions with very similar color

patterns, we also adopt a larger window radius R than r to

include more pixels for textureless regions. Similar to [9],

a much stricter color similarity threshold τs is enforced in

(10), when the current arm length h>r. Then, the cost vol-

ume is filtered by CLMF-0/1 using both input images sym-

metrically, followed by a simple Winner-Takes-All strategy

and occlusion detection and filling as presented in [14].

Unlike [14] using a weighted median filter for postprocess-

ing, where the weights are given by a costly BF, our method
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Figure 8. Disparity maps for Venus and Cones using CLMF-0.

Table 3. Evaluation of different cost aggregation methods

Method Avg. error %

a. Single pointwise est., m= 0[19] 8.29

b. Simple avg. of multipoint est., m= 0 6.86

c. Weighted avg. of multipoint est., m= 0 6.47

d. Weighted avg. of multipoint est., m= 1 6.30

e. GF-based aggr. w/o postprocessing [14] 8.85

reuses the explicit local support region Ωp (created already

for each point p) for efficient mode filtering as in [19].

We evaluated the proposed method based on the Middle-

bury stereo benchmark [1]. The parameters are set constant

across all datasets: r = 5, τ = 20, R = 13, τs = 6. Table 2

lists the results of the most relevant local stereo methods. It

shows that our CLMF methods are the best-performing lo-

cal stereo methods, even better than [14] that used to be the

best. Moreover, CLMF-0 achieves an average rank of 5.3

and ranks 3rd out of over 110 stereo methods for the chal-

lenging Cones scene. Fig. 8 shows the disparity maps esti-

mated by CLMF-0, which are piecewise smooth with depth

discontinuities well preserved. Turning off all the postpro-

cessing in our stereo method and that in CostFilter [14]

(based on its public Matlab code), we have compared the

performance of different cost aggregation schemes in Ta-

ble 3. It justifies the strength of each algorithmic improve-

ment in the CLMF framework as well as the advantage over

the GF-based aggregation. Table 2 also reports the overall

CPU runtime of CLMF methods and the competitors1 for

Tsukuba. CLMF-0 stands out as the most cost-effective one.

4.2. Depth Map Enhancement

Given a low-resolution and/or noisy depth map plus a

registered high-resolution, noise-free color image, the reso-

lution or quality of the depth map can be enhanced by joint

filtering with the color image as the guidance. Table 4 com-

pares five different filters when applied to upsample a low-

resolution depth map by a scaling factor of 8. Compared

with BF and GF, CLMF-0 significantly improves the depth

map accuracy, particularly for challenging depth disconti-

nuities. This is due to the reason revealed in Sect. 3.5. For

the same reason, CLMF-1 does not perform so well like

CLMF-0, though it is better than GF. In addition, CLMF-

1We measured our careful C++ implementation of CostFilter [14] on

the same PC, but excluding its costly weighted median filtering runtime.

Table 4. Quantitative evaluation for depth map upsampling in disc.

and all regions (All the parameters have been fairly configured.)

Error rate % BF GF [10] CLMF-1 CLMF-0

Tsuk.
Disc. 40.3 49.6 25.1 39.1 19.7

All 8.94 11.3 6.10 8.75 4.30

Venus
Disc. 15.0 25.6 6.14 12.2 9.98

All 1.48 2.60 0.63 1.14 0.93

Teddy
Disc. 30.8 39.5 26.1 31.0 28.5

All 11.6 15.5 10.1 12.0 11.6

Cones
Disc. 27.3 35.2 23.7 26.5 25.3

All 13.1 17.0 11.8 12.9 13.1

10% AWGNGround-truth GF, RMSE=5.21 CLMF-0, RMSE=3.16

GF, depth disc. error rate = 39.5% CLMF-0, depth disc. error rate = 28.5%

Figure 9. Depth upsampling results (top row, 8× upscaling in Ta-

ble 4) and depth denoising results (bottom row) by GF (ǫ=0.05
2)

and CLMF-0 (τ =10/255), both with r=9 and the best settings.

0 achieves the results close to those of a state-of-the-art

method [10], but it runs much faster. Fig. 9 shows the visual

results of depth upsampling and depth denoising. CLMF-0

yields piecewise smooth depth maps with much cleaner and

sharper depth edges than GF visually and quantitatively.

4.3. Single Color Image Denoising

Like BF used for noise reduction [8], GF and CLMF-1

can also be applied to this task. Compared with more so-

phisticated methods e.g., non-local means [2], local filters

do not achieve the best denoising results. However, they

typically have advantages of fast speed and easy implemen-

tation [11]. Fig. 10 compares the color denoising results

of CLMF-1 and GF, where the best parameter settings have

been used. Compared to GF, CLMF-1 removes the additive

noise adequately, achieving much better signal recovery for

high-variance regions. Fig. 11 studies the effects of the pa-

rameters when varied to denoise the same image. Increasing

σr or ǫ after the best setting, both BF and GF overly smooth

the image (increased RMSE), but CLMF-1 performs con-

sistently better thanks to τ used to select the data points

for regression. We have also fixed ǫ to 0.22 and varied τ
settings for CLMF-1. When τ is set between 20/255 and

50/255, quite similar denoising results are obtained. If τ is

set even larger, CLMF-1 behaves increasingly close to GF.
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10% AWGN GF result, RMSE = 10.96 Error map of GFppppppppp

Ground-truth CLMF-1 result, RMSE = 8.30 Error map of CLMF-1

Figure 10. Color image denoising by GF (ǫ=0.22) and CLMF-1

(τ =30/255, ǫ=0.22) with r=9. Intensity scaled by 3 for insets.

For 20% AWGN, RMSE is 17.25 for GF and 14.95 for CLMF-1.
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Figure 11. Color denoising performance evaluation. (a) Varying ǫ
in GF and CLMF-1, or σr in BF. (b) Varying τ in CLMF-1.

4.4. Graphics Applications

Besides the application to image/video abstraction [16]

in Fig. 5, CLMF-1 can also be used for several graphics ap-

plications. Next, we present the results for detail enhance-

ment and flash/no-flash denoising in Fig. 12. As a gradient-

preserving smooth filter, CLMF-1 achieves visually similar

results as GF [6]. Both of them do not have unwanted gra-

dient reversal artifacts in the resulting images that BF has.

5. Discussion and Future Work

This paper proposed a generic framework of performing

cross-based local multipoint filtering efficiently. CLMF-0

and CLMF-1 find very competitive applications into many

computer vision and graphics tasks. On the theoretical side,

the current framework can be further extended to accommo-

date nonlocal algorithms [7]. Exploring other approaches to

decide adaptive scales directionally is interesting. Our re-

cent study has led to a O(1)-time cross construction method

that greatly reduces the computational overhead. This will

be reported elsewhere. Zhang et al. [20] showed that the

cross-based technique is very friendly for GPUs, so we also

plan to map our filters onto GPUs for significant speedup.
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