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ABSTRACT

In this paper, we explore how to utilize the video context
to facilitate fashion parsing. Instead of annotating a large
amount of fashion images, we present a general, affordable
and scalable solution, which harnesses the rich contexts in
easily available fashion videos to boost any existing fash-
ion parser. First, we crawl a large unlabelled fashion video
corpus with fashion frames. Then for each fashion video,
the cross-frame contexts are utilized for human pose co-
estimation, and then video co-parsing to obtain satisfactory
fashion parsing results for all frames. More specifically, Sift
Flow and super-pixel matching are used to build correspon-
dences across frames, and these correspondences then con-
textualize the pose estimations and fashion parsing in indi-
vidual frames. Finally, these parsed video frames are used as
the reference corpus for the non-parametric fashion parsing
component of the whole solution. Extensive experiments on
two benchmark fashion datasets as well as a newly collected
challenging Fashion Icon (FI) dataset demonstrate the en-
couraging performance gain from our general pipeline for
fashion parsing.
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Figure 1:

their parsing results obtained by our proposed system. Note

Illustration of images for fashion parsing and

that the girls are photographed with quite diverse poses, with
some girl in side-view or back-view even, which are very chal-
lenging circumstances for fashion parsing. For better viewing
of all figures in this paper, please see the original zoomed-in
color pdf file.

1. INTRODUCTION

Fashion parsing aims to predict the label (e.g. skin, t-
shirt, etc.) for each pixel in a fashion image. The perfor-
mance of traditional fashion parsers are constrained by the
limited training data, and thus cannot well parse the fashion
images which contain human bodies in arbitrary, even exag-
gerated poses and various views. In this paper, we propose
a fashion parsing algorithm which can potentially make use
of unlimited fashion videos on the web, and thus can parse
the challenging fashion images well. Some exemplar parsing
results are shown in Fig. 1.

Fashion parsing has the potential to benefit a wide range
of applications [2, 12, 11]in the multimedia area. For exam-
ple, it can be used to analyse the numerous photos shared by
users on social networks, so that the information about the
users’ personalities and preferences can be obtained and ex-
ploited for friend recommendation, advertisement, etc. Be-
sides, fashion parsing can also be used in intelligent surveil-
lance, e.g., person re-identification. A good understanding of
one’s apparel may provide useful cues to identify a person.
Despite its various potential applications, current fashion
parsing systems [17, 3, 16, 10] still have many limitations,
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Figure 2: Framework overview of our system. It contains two components, i.e., contextual video parsing and non-
parametric fashion parsing. Any off-the-shelf constrained pose estimator and fashion parser can initialize the human
pose estimation and parsing results. To leverage the video contexts represented by Sift Flow and super-pixel matching,
the videos have much better human pose estimation and fashion parsing results by the proposed video human pose
co-estimation and fashion co-parsing algorithms. Since no supervision is required for the video data, a large number of
video frames and their video parsing results can be obtained and used as a gallery set to facilitate the non-parametric

label transfer to the test image.

since they cannot handle fashion parsing well, which is the
common case in real life.

To solve fashion parsing in the wild, there are mainly two
challenges. Firstly, there is a great diversity in human poses,
which results in the unsatisfactory performance of even the
state-of-the-art human pose estimator [18]. As an important
embedded component of all fashion parsers, the poor perfor-
mance of a human pose estimator may greatly degrade the
fashion parsing results. Secondly, there has been no dataset
specially designed for the fashion parsing task. All existing
publicly available fashion parsing datasets [16, 10, 16] con-
tain only constrained images. Lack of training data makes
training an unconstrained fashion parser impossible.

In this paper, we propose a novel framework which lever-
ages video contexts to tackle the fashion parsing task with-
out extra annotation. Here, the videos are not required to
be labelled, thus can be easily obtained from the web (e.g.,
youtube.com). The framework is illustrated in Fig 2. It
contains two components: 1) contextual video parsing, and
2) non-parametric fashion parsing. As for the contextual
video parsing component, the goal is to parse the unlabelled
unconstrained videos which are also assumed to be in the
wild, yet with valuable cross-frame contexts. Since human
pose estimation is the prerequisite for fashion parsing, a hu-
man pose co-estimation step (Sec. 4.1.1) is implemented first
in the contextual video parsing component. In this step,
we first apply the off-the-shelf constrained human pose es-
timator to the videos, and then refine the estimated results
by incorporating the pixel-level correspondences between se-
quential frames, which are described by Sift Flow [9]. After
the human pose co-estimation, we first apply a constrained
fashion parser (pre-trained on a small amount of constrained
labeled data). It can provide a rough initialization for un-
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constrained video parsing. Then we use the super-pixel-level
correspondences between two sequential frames, which are
described by a super-pixel matching technique to refine the
parsing results. That is, we co-parse all the frames in one
video simultaneously (Sec. 4.1.2). In the fashion parsing in
the wild component, these parsed video frames are used as
the gallery set which transfers labels to testing images by
the proposed non-parametric method (Sec. 4.2). To verify
the effectiveness of the proposed framework, we conduct ex-
tensive experiments. The results proof that our framework
better parses fashion images in the wild than state-of-the-art
parsers.

Our whole framework is inspired by physiology. More
specifically, our whole system simulates how a baby grad-
ually gains more knowledge. Initially, a little baby has a
simple and original understanding of the world (correspond-
ing to the initial fashion parser in our paper). Then the baby
gradually learns more knowledge by linking what he/she al-
ready knows with the world (corresponding to label propa-
gation from initial fashion parser to the whole video). After
gaining much more knowledge about the world (finish the
video parsing), the baby can apply his/her enriched knowl-
edge to handle the problem (using enlarged video corpus to
transfer labels to testing image). The first component of our
system, i.e., contextual video parsing, simulates the process
that a baby gradually learns more knowledge. The second
component, i.e., the non-parametric label transfer, simulates
the process that determines how the baby uses the knowl-
edge he/she learns to better solve a problem.

The contributions of this work can be summarized as:

e Our work differs from other existing fashion parsing
works in that we parse fashion images with the help



of the large scale of web videos without extra annota-
tion. Extensive experiments on three datasets prove
the effectiveness of the proposed framework.

e In order to robustly parse the web videos, we leverage
the rich temporal and semantic video contexts. It con-
tains two components, i.e., the contextual video pars-
ing and the non-parametric fashion parsing.

e We construct two new datasets, one large video dataset
and one Fashion Icon (FI) dataset, which can serve as
the benchmark datasets for the fashion parsing task.

2. RELATED WORK

In this section we review the recent research development
in the fields of fashion parsing and video parsing sequentially.

2.1 Fashion Parsing

The first clothing parsing work was conducted by Yam-
aguchi et al. [17]. Their fashion parsing performance was
not quite high due to the large human pose variation and
background clutter. Later, Yamaguchi et al. [16] dramati-
cally improved the fashion parsing performance by using a
retrieval based approach. Their approach combines pars-
ing from pre-trained global clothing models, local cloth-
ing models learned on the fly from retrieved examples, and
transferred parse masks (paper doll item transfer) from re-
trieved examples. Dong et al. [3] used Parselets as the
building blocks of the parsing model. Parselets are a group
of parsable segments which can generally be obtained by
low-level over-segmentation algorithms. They built a De-
formable Mixture Parsing Model (DMPM) for human pars-
ing to simultaneously handle the deformation and multi-
modalities of Parselets. Liu et al. [10] addressed the problem
of automatically parsing the fashion images with weak su-
pervision from the user-generated color-category tags. They
proposed to combine the human pose estimation module,
the MRF-based inference module and the category classifier
learning module. However, all the existing algorithms can
only parse the constrained fashion images, which are still far
from practical use. To our best knowledge, we are the first
to explore the fashion parsing task.

2.2 Video Parsing

The main difficulty of video parsing lies in the great bur-
den of labelling training samples. According to the amount
of required labelling, video parsing algorithms can be clas-
sified into four categories. The first category is supervised
video parsing [14], which requires a large amount of labelled
video data and thus is extremely tedious for human labelling.
To reduce the burden of labelling, semi-supervised video seg-
mentation [1, 15] is proposed, which reduces the labellers’
burden to some extent. Later, weakly supervised video seg-
mentation was explored [13] where semantic labels are asso-
ciated with training videos but not spatially or temporally
localized. Our video parsing technique belongs to the last
category, i.e., unsupervised video parsing. No pixel-level la-
bels are required when we parse the video data, thus ideally
an infinite number of videos can be parsed, which partially
alleviates the lack of unconstrained training data.

3. DATASET COLLECTION

We collect two datasets, including a video dataset and a
Fashion Icon (FI) image dataset for our ultimate purpose
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of fashion parsing. The first video dataset contains 1,500
videos. The second F1 image dataset contains 1,082 images.

Video Dataset: Three requirements are considered dur-
ing the data collection. First, all the videos are HD videos
so that the clothes can be seen clearly to facilitate the later
fashion parsing. Second, at least one girl in the video is un-
occluded from head to toe during the entire video sequence.
Third, to balance the informativeness of the videos and the
processing efficiency, the lengths of all video clips retained
range from 2 seconds to 10 seconds. We mainly collect five
categories of videos, including: 1) MVs of the singers; 2)
dance teaching videos; 3) fashion shows of some clothing
brands; 4) fashion TV dramas or movies; and 5) big evening
parties or talent shows.

To balance the efficiency of video processing and the in-
formativeness of videos, we sample from each video and keep
the frame number in each video less than 50. In order to fil-
ter the background of each frame, all the crawled videos are
automatically preprocessed to be human-centric and with
less background clutter before fed to our video parsing sys-
tem. The automatic preprocessing process contains two
steps. We first use Grammar Models [6] to automatically
detect the human body. Then, the detected human-centric
bounding box is used as the seed for the tracking algorithm
[7, 19]. Thus all the video frames are roughly aligned and
mostly occupied by the human body, which greatly facili-
tates the later video parsing. Alternatively, we can detect
the human body in each frame, but this solution suffers from
the relatively low detection speed. We believe that using de-
tection as the initialization for the later tracking algorithm is
a balance between accuracy and efficiency. Due to the fully
unsupervised processing of the videos, our video dataset is
easily scalable by continuously downloading more data.

Fashion Icon (FI) Image Dataset: We collect 1,082
images from the web to construct the Fashion Icon dataset
(FI). The FI dataset is quite different from existing fash-
ion parsing datasets [16, 3] in two aspects. Firstly, some
images in FI each contain multiple humans. Secondly, the
humans in the images of the FI dataset are in very diverse
poses, which is more consistent with reality. In order to com-
pare the performances of different parsing systems, the FI
dataset is thoroughly labelled based on the label set defined
by Dong et al. [3], which includes 18 categories: face, sun-
glass, hat, scarf, hair, upper clothes, coat, left-arm, right-
arm, belt, pants, left-leg, right-leg, skirt, left-shoe, right-
shoe, bag, dress and background.

4. FRAMEWORK

In this section we introduce the proposed framework. We
detail the contextual video parsing component and the non-
parametric fashion parsing component sequentially in the
following.

4.1 Contextual Video Parsing

The goal of our contextual video parsing is to parse all the
frames in each video simultaneously. The main challenge
comes from the large variations in human poses and views
within the video frames. The performance of existing fash-
ion parsers often relies on a perfect human pose estimator
to localize the human as well as the body parts. However,
most of the previous pose estimators, limited by the small
amount of training data, tend to fail in predicting arbitrary
poses in images from the web. In this paper, we propose
a novel generic graphical model to better infer the poses
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Figure 3: The whole video parsing framework. The graphical model has three layers: image layer, pose layer and

parsing layer.

Green triangles and blue squares respectively represent the traditional human pose estimation and

fashion parsing. By incorporating Sift Flow correspondences indicated by purple diamonds, video pose co-estimation
is conducted. The refined human pose results, along with the mined super-pixel matching indicated by red circles, are

fed into the video co-parsing step.

and the parsing results of any frames. Intuitively, we utilize
the temporal coherence and appearance consistency charac-
teristics within video frames to refine the estimated poses
and parsing results obtained from the existing constrained
models. By regarding these informative contexts as the reg-
ularization constraints, the pose co-estimation and fashion
co-parsing can be largely improved.

We denote the parsing results of all frames Z as ) and
human pose estimation results as H. We estimate the pixel-
wise semantic labelling, where the whole label set is denoted
as C = {1,---,N¢} and N¢ is the number of labels. The
three factors (Z,),H) are dependent upon each other for
the fashion parsing task. Video co-parsing can be viewed as
maximizing the conditional probability over parsing results
Y, human poses H and video frames Z, formulated as

PR, YI|T)=PHI|Z)P(VIZ, H). (1)

As illustrated in Fig. 3, our graphical model can be viewed
as the composition of three layers. The bottom layer I con-
tains all the input frames Z = {I;}. The middle layer
represents the estimated poses for each frame H = {hs}i.
Finally in the top layer, the fashion parsing results for all
frames are denoted as ) = {y;}{ . For simplicity, only three
temporal adjacent frames I¢_1, Iy and Iy are shown. Note
that the nodes in the middle layer h; are conditioned on the
input observations Iy and the temporal constraints wy ;11
and wy_1,5 from the adjacent human poses. The inference
of all nodes is denoted as the video pose co-estimation. Fur-
thermore, the video co-parsing task can be converted to in-
ferring the states of nodes y; in the top layer. The prob-
ability of each node ys relies on the prediction of the cor-
responding pose hy, the appearance constraints my, s41 and
mys_1,5 as well as the inputs Iy. Because there are numer-
ous hypotheses of locations of poses and all the frames are
required to be parsed simultaneously, the joint inference of
P(H|Z)P(Y|Z,H) can be NP-hard and impossible to solve
efficiently. We approximate the inference task in Eq. (1)
by separately optimizing the two sequential tasks: pose co-
estimation P(H |Z) and video co-parsing P(Y |Z,H). Note
that the results of video pose co-estimation are the inputs
of video co-parsing.
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4.1.1 Video Human Pose Co-estimation P(H |T)

Our pose co-estimation stage has two steps. First, we es-
timate the initial pose for each frame, illustrated as green
triangles in Fig. 3. Second, all poses of all the frames are re-
fined together by considering the confidence ranking of poses
and the Sift-Flow correspondences between the successive
frames, represented by purple diamonds in Fig. 3.

Image Human Pose Estimation P(hy|l;) : Human
pose estimation in the image has been extensively stud-
ied. We adopt the articulated pose estimation technique
with flexible mixtures-of-parts method [18]. The human
pose model can be represented by a K-node skeleton graph
Gs = (Vs; Es), where the K nodes V; correspond to different
human parts, such as left shoulder, right shoulder, etc., and
the edges E represent the relationships of human parts.

Given a frame Iy, we estimate the locations {I%}/<, for
all K key-points and the associated part types {tlf}f(zl for
each point within the human skeleton. The human pose can
be calculated as hy = {lf,ts}, where Iy = {I}}/<, and t; =
{t5}/£,. We denote the hypotheses set of I} as {1,---,L}
and that of tj} as {1,---,T}, where L is the image lattice
and T is the number of types for each part.

Given a pose configuration hy (including part types ty
and positions ly), the confidence P(hs|If) is computed by
combining 3 factors: the corresponding confidence for the
part type assignments ¢y, the unary score for each key point
and the pairwise scores for the skeleton relations by [18]. It
is worth noting that the probability P(hy|If) can be used to
roughly predict the accuracy of the human pose estimator.
That is, the high probability means the estimator has strong
confidence for the estimated pose. We rank the probabilities
of all the poses for all frames in each video, and then we can
select the most confident poses, used as the “seeds” for the
following pose co-estimation.

Video Human Pose Co-Estimation P(# |Z): As afore-
mentioned, even the state-of-the-art pose estimators may fail
when parsing the fashion images. To process the numerous
frames, we consider the video frames as a chain structure
and the contextual relationships between adjacent frames
are used to regularize the poses of all the frames. In this
chain model, each node is the pose hy of the frame Z, and
the edges Ew are the chains. As shown in Fig. 3, the frame
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Figure 4: Illustration of human pose co-estimation. The
frames {4, #7, 423, #24 of the video are shown.

strained human pose estimator is applied and the confidences

The con-

are shown in parentheses. Then the frames with high confi-
dences (e.g., 7 with confidence 0.9367) are regarded as seeds.
Each frame has 3 candidate poses. The first candidate is gen-
erated by the frame itself, while the other two are transferred
from seeds by Sift-Flow correspondences (in second row). For
each possible candidate pair, we calculate the pairwise term
according to the Sift Flow field. Based on the context be-
tween successive frames, the optimal poses among all pose
candidates are selected, which are highlighted by red bound-
ing boxes. The final pose co-estimation results are shown in
the last row, which are much better than the original esti-
mated poses, such as the initial pose estimation results for

frames {23 and {24, highlighted by green bounding boxes.

hy connects only with hy_1 and hyy1. By using the tempo-
ral constraints, more accurate human pose estimations for
all frames can be obtained simultaneously.

We use the Sift Flow [9] method to capture the temporal
displacements between successive frames. For the frame pair
(3,7), we denote the corresponding flow field as w;,;, which
is a 2D flow vector indexed by pixel positions. Given the
flow field w; ;, the position of each pixel p in the frame 4 can
be mapped to p + w; ;(p) in the frame j. Note that w is
not symmetric, i.e., w; ; # wj,i, according to the Sift Flow
computational framework.

As for human pose co-estimation, we consider two items
for jointly refining the poses of all the frames: single pose
confidence for each frame and the pairwise pose coherence.
First, the single pose confidence is obtained by P(hy|Iy),
which evaluates the quality of the estimated pose of each
frame. Second, the pairwise term assesses the coherence of
poses in two adjacent frames. We map the estimated pose
of one frame by the flow vector to its adjacent frame, and
hope the mapped pose to be close to the estimated pose of
the adjacent frame. This means that pose estimation results
should be consistent with the temporal flow field. We thus
formulate the human pose co-estimation as maximizing the
probability P(H|Z),
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where 7 is used to balance the single pose confidence and
the pairwise pose coherence, which is empirically set in our
experiments. Given the pose ly, of the frame Iy, we map
it into the frame Iy, by using the Sift Flow vector wy, ¢,
for all locations of Iy, denoted as I}, + wy, 5, (I5,). The
temporal displacement between the estimated pose [y, and
the transfered pose I}, + wy, f,(l%,) is calculated using the
Euclidean distance. The pairwise term is computed by the
summation of the displacements of all key points.

The difficulty of optimizing Eq. (2) lies in two aspects. 1)
We estimate the pose locations {I;}f; of all frames simulta-
neously, which leads to a very huge hypotheses set of the size
FKL. 2) The whole graph for the pose co-estimation can be
viewed as a hierarchical model. The bottom is a common
skeleton graph, of which the nodes are human key points and
the edges are skeleton relations within each frame. Then the
top is a chain structure, where the nodes are the single pose
confidences obtained from the bottom and the edges Ew
are the cross-frame pose coherences. This hierarchical graph
makes inferring pose locations intractable for each video, not
to mention our large-scale video set.

For efficiency, we consider all within-frame nodes (i.e. key
points) for each frame as a super node (i.e. an integrated
pose candidate). In this way, our graph can be simplified
into a chain structure from a hierarchical model, which can
be effectively solved by the well-known belief propagation
method !. To generate a set of reasonable pose candidates
for each frame, we use the pose propagation strategy with
the selected pose seeds. Specifically, we rank all confidences
{P(hy|If)}f—, of initialized poses for all frames and select
the top 5 candidates with the highest confidences as the pose
seeds. We then propagate these seeds to all other frames
via Sift Flow [9]. Except the frames with pose seeds, each
frame Iy has 6 candidate poses, including 5 propagated pose
candidates and the estimated pose from [y itself. We con-
sider these pose candidates as the possible hypotheses of
each frame, which largely reduces the searching space for
each node. During the inference procedure, the unary term
for each super node Iy is P(hy|Iy) and the probabilities of
propagated pose candidates are directly transferred from the
original pose confidence of seeds. In addition, given a spe-
cific pair of frames, we obtain different pairwise terms if we
select different pose candidate pairs. The pairwise term for
each pose candidate pair is calculated by the summation
of two temporal displacements using the Sift Flow vector,
as described in Eq. (2). The whole procedure of our pose
co-estimation is illustrated in Fig. 4. Two pose seeds with
highest confidences are selected and then used to generate
the candidate poses for the non-seeds frames.

4.1.2 Video Co-Parsing P(Y|Z,H)

Given the refined human poses for all frames, we can per-
form the video co-parsing, conditioned on the image and

"http://www.di.ens.fr/~mschmidt /Software/UGM.html
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Figure 5: Non-parametric fashion parsing. For each testing
image, 25 similar images in the video corpus are retrieved.
Parsing results are then transferred from the retrieved video
frames to the testing image at the super-pixel level. We show
the transfer process of 5 fashion items, i.e., leg/right leg,
left /right shoes and upper-clothing.

pose layer as displayed in Fig. 3. Our co-parsing algorithm
includes two steps: computing pixel-level confidences w.r.t.
the fashion items P(yy,|If, hy) for all pixel i € Iy (de-
noted as blue rectangles), and then co-parsing all frames by
considering the super-pixel correspondences (denoted as red
circles) to obtain P(Y|Z,H).

Image Parsing P(yys |If,hs): Given one frame Iy and
the refined human pose hy, we compute the confidence score
of assigning the possible clothing item label to each pixel.
Let us denote y;,;/ as the clothing item label at pixel ¢’. The
confidence score P(yy,/|Is, hy) of assigning clothing item la-
bels to y¢,;» can be computed by the existing fashion parser,
e.g. [16]. And P(ys|Is,hy) can be denoted as the set of
Pygirlly, hy).

Note that our algorithm can easily adapt to any other
fashion parser, such as [3], by properly redesigning video
co-parsing solution.

Video Co-parsing P(Y |Z,H ): Based on the pixel-level
confidences, we refine the parsing results of all frames to-
gether by considering the within-frame and cross-frame super-
pixel consistencies. Intuitively, the super-pixels in the spa-
tial neighbours within each frame are encouraged to take the
same fashion labels; and similarly, the matched super-pixels
across the adjacent frames also favor the same labels. We
can thus rectify and smooth the label map of super-pixels of
all frames together.

Following the previous parsing works, we build dense ap-
pearance correspondences for super-pixels instead of pixels.
We first compute over-segmentations of all frames using a
fast segmentation method [4]. Then the confidence score
of assigning the clothing item label to each super-pixel s
is computed as the average of the pixel-wise confidences
P(ygir|If,hy) of i’ € s which represents all pixels within
this super-pixel. We denote the confidence score of each
super-pixel by ¢s(ys(s)). To smooth the label maps of all
frames, we utilize two kinds of relationships to consider the
appearance consistency. First, the within-image relationship
Nint is computed for the spatial neighbors of super-pixels.
Second, we consider the cross-image relationship Ney: for
each super-pixel with its most similar counterpart in the
previous/subsequent frame.
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Mathematically, our co-parsing task aims to maximize the
probability P(Y |Z,#H ), formulated as

PWIT,H) occexp(—(D_ > bslys(s))+

FETseEny
> >

(s,q)€Njpt (s,9)ENegt

S"ewt(yf(s)) Yygr (q)llf) If’)))

(3)
where Ay denotes all super-pixels within each image Iy.
(s, q) represents each pair of neighboured super-pixels within
images and across images. The within-image smoothness
term @iy and the cross-image smoothness term @ext are de-
fined as

Pext (Y7 (8), yr (@)1 r)

= 0(ys(s) # yr(q) exp(=Aeat | F(s) — F(q)])
int (Y5 (8), yr (O 5, Ipr)
= 0(ys(s) # yp () exp(—=Xint | F(s) = F(q)|)

where ¢ (+) is the indicator function and F(s) is the feature
of the super-pixel, which is computed by a concatenation of
bag-of-words from RGB, Lab and Gradient for each super-
pixel. We also pick the closest super-pixel pairs (s, q) across
the sequent frames using L2-distance on these bag-of-words
features. Azt and A;,: are the weights of two kinds of pair-
wise terms. Because our pairwise term Eq. (4) is a submod-
ular function, the optimization of maximizing Eq. (3) be-
comes a tractable graphical model. We solve this optimiza-
tion problem by the well-studied a-expansion method [5].
Thus the optimal parsing results of all frames can be calcu-
lated as ).

Pint (yf(S), Yr (q)IIf) +

(4)

4.2 Non-parametric Fashion Parsing

Based on our contextual video parsing algorithm, we can
efficiently process the large scale video data to generate the
gallery set of images. In the following, we propose a non-
parametric method for transferring the parsing results of our
parsed gallery to the test image.

Given a testing image I, we first use the human detection
technique [6] to roughly locate the human body. The caffe
feature [8] for each human is computed, which can intrinsi-
cally capture the style, pose and appearance characteristics
of the whole image. We use L2-distance over the DeCAF
feature to find 25 nearest neighbors in our gallery. After
that, the testing images are over-segmented and each super-
pixel of the testing image finds the closest super-pixel from
each retrieved image using L2-distance of the caffe features.

More specifically, we denote the retrieved images for the
image I as D. For each super-pixel s, the selected corre-
sponding super-pixel from the reference image r in D is
denoted as s,, and the caffe feature of the super-pixel s
is denoted as h(s). Then, our transfered label ys for each
super-pixel s is computed by

Plyals, D) = = 3ttt
' L+ [[h(s) — h(sr)ll

4 reD

(5)

where we define:

1
M(ys, sr) =

[sr

> 8y = vs), (6)

i’ Esp

where |s,| is the number of pixels within the super-pixel
s, and i’ denotes each pixel. Z is a normalization con-
stant. Our parsing results are computed as the weighted
average of the parsing results of closest super-pixels for all
retrieved images in D. The obtained transferred parsing
results P(ys |s, D) for all super-pixels are further refined by
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Figure 6: The top row shows images from FS and CFPD
while the bottom row shows images from FI.

Markov Random Filed to respect boundaries of actual cloth-
ing items.

5. EXPERIMENTS

We first introduce our experimental setting, including the
datasets and the baselines we compare with. Then we report
the step-by-step results of the whole framework, including
the quantitative and qualitative results of video pose co-
estimation, video co-parsing and test image parsing.

5.1 Experimental Setting

We conduct the experiments on three datasets. The first
is the Fashionista (FS) dataset [17] containing 685 photos
with good visibility of the full body and covering a variety of
clothing items. 456 out of the 685 images are used for train-
ing and the rest 229 images are used for testing. The second
dataset is the Colorful Fashion Parsing Data (CFPD) [10]
dataset which consists of 2,682 images. The training set
and the testing set are split into half-half. The third dataset
is our newly collected Fashion Icon (FI) dataset which con-
tains 1,028 images. The images in this dataset contain one
or multiple humans with quite diverse human poses. Some
exemplar images of the three datasets are shown in Fig. 6.
It can be seen that humans in constrained fashion images
are in (near)-frontal view and well-posed. However, in un-
constrained fashion images, the girls cross or stretch their
arms or legs freely, and may be in arbitrary view. In our
experiments, the label sets of F'S and CFPD contain 18 and
13 kinds of fashion items, respectively. FI has two sets of
label sets, one containing 18 kinds of fashion items as FS,
and the other containing 13 kinds as CFPD, where the later
is obtained by merging from the former. Our experiments
are conducted on a PC with Core 17 3.4GHz GPU and 6GB
memory, and the average processing time for testing an im-
age with resolution 600 %400 is 2 seconds. The parameter 7,
Aezt and Ain: are set as 0.1, 0.5 and 0.5 empirically in this
work.

5.2 Experimental Results

In this subsection, we first evaluate the effectiveness of
human pose co-estimation and video co-parsing sequentially.
Then, we compare the results of our system and the baselines
on the three datasets.

5.2.1 Video Pose Co-estimation Evaluation

We evaluate our human pose co-estimation method in
predicting the poses of frames. We randomly select 100
videos from our collected video dataset and manually label
14 key points of the human skeleton for each selected video
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Table 3: Comparison between frame based parsing
and video co-parsing

Method Accuracy F.g. accuracy Avg. precision Avg. recall Avg. F-1

Parsing 80.48 44.79 31.98 40.64 33.18
Co-Parsing 82.38 48.47 33.02 42.54 34.69

frame. We compare our results with the state-of-the-art
image-based pose estimator, mixtures-of-parts model [18],
which is trained on FS and predicts the pose of each frame
separately. The standard PCK (Probability of Correct Key
point) metric [18] is used to evaluate the performance of pose
estimation. Table 1 displays the results of the frame based
pose estimator (denoted as “Pose”) and the video pose co-
estimator (denoted as “Co-Pose”). The results demonstrate
that our video pose co-estimator can generally improve the
key points localization accuracies for 9 out of all 14 key
points. In particular, the accuracy for the left knee point
has been increased by 9.6%. Moreover, Our average PCK
of all 14 key points reaches high accuracy of 78.17% and
improves the “Pose” by 1.73%.

In addition, we also visualize the pose estimation results of
the two comparison methods in Fig. 7. For the dancing video
frames with large variations in pose and view, our method
shows superior performance in predicting the key points of
human poses, especially for the left and right knees. As
shown in Fig. 7(a), only the left knee point of the first frame
is predicted correctly for “Pose” while our method can rectify
the left knee key points of all frames by benefiting from the
Sift-Flow and temporal coherence constraints.

5.2.2 Video Co-Parsing Evaluation

We compare the performances of our video co-parsing
method with the existing image-based fashion parser [16],
whose code is publicly available 2. The 100 videos are ran-
domly selected and all frames are manually labeled. Similar
to [16], we evaluate the parsing results of all frames with
5 metrics, including accuracy, foreground accuracy, average
precision, average recall and average F-1 score. The compar-
ison results are shown in Table 3. Significant improvements
of our co-parsing method for all 5 metrics can be observed.

More exemplar results are shown in Fig. 8. Video co-
parsing predicts more consistent fashion labels for all video
frames than the image-based fashion parser. For example,
in the left panel, “Parsing” predicts that the girl wears upper
clothing in three frames yet dress in two frames. Through
the contextual inference of “Co-Parsing”, all five frames are
correctly predicted. Another example is shown in the right
panel of Fig. 8. The left/right arms and left/right legs are
more accurately estimated benefiting from the temporal reg-
ularizations during the co-parsing procedure.

5.2.3  Evaluation of Fashion Parsing in FS and CFPD

We report the fashion parsing performance of Paper Doll
and our method on testing images in the FS and CFPD
datasets. In addition, we evaluate the superiority of our
pose co-estimator and video co-parsing components. The
“Co-Pose+Co-Parsing” utilizes the pose co-estimator and
the video co-parser sequentially. The “Co-Parsing” solution
does not implement pose co-estimation and directly uses the
image-based pose estimator.

The results are listed in the first two rows of Table 2. It is
obvious that both of our two solutions achieve higher perfor-

http://www.cs.sunysb.edu/~kyamagu/research /paperdoll/



Table 1: The PCK comparison between frame based pose estimation and video based pose co-estimation.

key point lank lkne Thip rhip rkne rank lwr lelb Isho rsho relb TWr hbot htop
Pose 68.88 74.13 83.39 83.92 79.37 71.50 43.88 73.43 93.01 90.04 71.50 47.38 94.93 94.76
Co-Pose 74.48 83.73 87.94 91.78 80.94 70.80 44.58 72.55 92.65 91.78  69.06 38.63 98.08 97.38

(a)

#3

(b)

Figure 7: Two comparison examples between image based human pose estimation (top row) and video based human pose

co-estimation (bottom row).
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Figure 8: Comparison examples between image based fashion parsing (middle row) and video based co-parsing (bottom row).

Table 2: Comparison among Paper Doll [16] and two solutions of our method in FS, CFPD and FI.

Data set Method Accuracy F.g. accuracy Avg. precision Avg. recall Avg. F-1
Paper Doll 85.69 52.09 41.74 45.15 37.43
FS-FS Co-Parsing 87.21 54.03 54.73 39.36 39.15
Co-Pose + Co-Parsing 88.34 57.08 56.97 42.25 43.69
Paper Doll 82.79 44.08 49.20 32.00 32.66
CFPD-CFPD Co-Parsing 83.73 49.03 43.56 40.36 39.96
Co-Pose + Co-Parsing 84.70 52.49 42.31 42.31 41.42
Paper Doll 84.63 47.43 36.12 39.65 35.20
FS-FI Co-Parsing 86.26 42.09 35.96 29.30 28.31
Co-Pose + Co-Parsing 87.33 51.09 41.63 39.33 37.07
Paper Doll 81.81 37.11 34.20 28.04 25.20
CFPD-FI Co-Parsing 83.84 45.77 35.14 36.04 34.00
Co-Pose + Co-Parsing 85.65 50.29 37.13 38.05 36.05

mances than the Paper Doll in general, which demonstrates
the capability of our contextual video co-parser. In addi-
tion, the necessity of human pose co-estimation is proven,
where the avg. Fl-score of “Co-Pose+Co-Parsing” outper-
form “Co-Parsing” by 4.54%.

We also present the Fl-scores for each fashion item label
in Fig. 9(a) and Fig. 9(b). Generally, the “Co-Pose+Co-
Parsing” shows the highest performance, especially in pre-
dicting the human part labels, such as "LeftLeg”, "Left Arm”,
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"RightLeg” and "Right Arm”. We can also observe this supe-
rior performance from the visualization of parsing results in
Fig. 11(a) and Fig. 12(a). The first row shows the parsing
results of Paper Doll and the second row shows ours. Our
parser performs better on predicting the fashion items, such
as skirt, pants, and upper-clothes. In addition, our results
can be less disturbed by the background clutter and show
relatively clear boundary and appearance consistency, e.g.
the leg regions of the second and third images in the first
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Figure 9: F-1 score of each class in the FS-FS and CFPD -CFPD settings.
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Figure 11: Comparison of two settings: (a) FS-FS, (b) FS-FI. In each triple, the original image, the parsing result by Paper

Doll and our result are shown sequentially.

A "

5

EN
=

%
} )

| ¥ 1 v,/ ~ & iy iy
H B B BN [ | = H B B
up glass skirt shoes scarf pants hat dress belt bag hair skin null

Figure 12: Comparison of two settings: (a) CFPD-CFPD, (b)CFPD-FI. In each triple, the original image, the parsing result

by Paper Doll and our result are shown sequentially.

row of Fig. 11(a). Moreover, our parser can also correctly
localize small fashion items, such as the bags in the second
and third images in the second row of Fig. 11(a) and the
third image in the first row of Fig. 11(b).
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5.2.4  Evaluation of Fashion Parsing in FI

Our collected FI dataset contains more images with di-
verse poses and arbitrary views. We parse images in the
FI dataset with the trained model from two training image
sets, FS and CFPD, separately. The main difference be-
tween F'S— FI and CFPD — F1I is that we train two super-



vised parsing models with different training data and label
sets. Similarly, we compare two solutions of our method,
i.e., “Co-Pose+Co-Parsing” and “Co-Parsing” with the base-
line Paper Doll. The quantitative comparison results show
that our method largely improves the performance of Paper
Doll in both settings, shown in the last two rows of Table 2.
It is worth noting that our method shows larger improve-
ments on the FI dataset than on FS and CFPD datasets.
Specifically, with the same training dataset CFPD, the per-
formance of FI is increased by 3.82% compared with 1.91%
of CFPD in terms of accuracy. This well proves the advan-
tages of our method on parsing fashion images.

The detailed comparison of each fashion item label among
“Paper Doll”, “Co-Parsing” and “Co-Pose+ Co-Parsing” in
both FS-FI and CFPD-FI settings is illustrated in Fig. 10. In
general, “Co-Pose+ Co-Parsing” outperforms “Co-Parsing”
and performs much better than Paper Doll.

Moreover, the visual parsing comparisons are shown in
Fig. 11(b) and Fig. 12(b) for the FS and CFPD datasets,
respectively. Our system can correctly predict the fashion
items for images with very diverse human poses, e.g., the
second image of the first row of Fig. 11(a).

Additionally, we also conduct experiments of parsing the
multi-human images under the FS-FI setting, as shown in
Figure. 13. We use the detection method [6] to cut the
images into several smaller images with single human only.
The single human image is then fed into our system and
the parsing results are generated. Then the final parsing
result for each multi-human image is merged by combining
the parsing of each single image. We show several results
of parsing images with multiple humans and prove that our
method can predict reliable parsing results when the humans
are not heavily occluded.

6. CONCLUSION AND FUTURE WORK

In this paper we propose a novel framework for fashion
parsing in the wild which leverages video contexts with-
out extra annotation. It contains two components, i.e.,
the contextual video parsing and the non-parametric fashion
parsing. Extensive experiments on two benchmark fashion
datasets as well as a newly collected FI dataset demonstrate
the effectiveness of our proposed framework well. We can
optionally label more unconstrained images and train an
unconstrained fashion parser. However, the great burden
of human labelling may considerably limit the scalability of
the fashion parser. Since our method only needs the unsu-
pervised videos which can be easily crawled from the web,
our solution can easily scale up to new videos with even
more challenging poses and views, e.g. lying on the floor or
sitting in the chair.

Two possible research directions can be considered in the
future. First, we plan to develop a mobile App, which can
parse images uploaded by users in an online way. Second,
we can select images with uncertain results through active
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Figure 13: The results of our system in parsing images with multiple humans in the FS-FI setting.

learning, and then annotate more frame poses and fashion
parsing ground truths, which may lead to better video pars-
ing results with a small amount of user interaction.
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