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Abstract

Existing visual tracking methods usually localize the object
with a bounding box, in which the foreground object track-
ers/detectors are often disturbed by the introduced background
information. To handle this problem, we aim to learn a more
robust object representation for visual tracking. In particu-
lar, the tracked object is represented with a graph structure
(i.e., a set of non-overlapping image patches), in which the
weight of each node (patch) indicates how likely it belongs
to the foreground and edges are also weighed for indicating
the appearance compatibility of two neighboring nodes. This
graph is dynamically learnt (i.e., the nodes and edges received
weights) and applied in object tracking and model updating.
We constrain the graph learning from two aspects: i) the global
low-rank structure over all nodes and ii) the local sparseness
of node neighbors. During the tracking process, our method
performs the following steps at each frame. First, the graph is
initialized by assigning either 1 or 0 to the weights of some im-
age patches according to the predicted bounding box. Second,
the graph is optimized through designing a new ALM (Aug-
mented Lagrange Multiplier) based algorithm. Third, the ob-
ject feature representation is updated by imposing the weights
of patches on the extracted image features. The object loca-
tion is finally predicted by adopting the Struck tracker (Hare,
Saffari, and Torr 2011). Extensive experiments show that our
approach outperforms the state-of-the-art tracking methods on
two standard benchmarks, i.e., OTB100 and NUS-PRO.

Introduction

Existing successful visual tracking methods mainly adopt
the tracking-by-detection paradigm, i.e., separating the fore-
ground object from its background over time by maintaining
a classifier on the fly. These methods usually localize the
object using a bounding box, and draw positive (negative)
samples from inside (outside) of the bounding box for the
classifier updating. Since the ground-truth object labelling is
only available at the initial frame, incrementally updating the
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object classifier in subsequent frames often undertakes the
risk of model drifting due to introducing outlier samples.

In literature of visual tracking, many efforts have been
devoted to alleviate the effects of outlier samples (Co-
maniciu, Ramesh, and Meer 2003; Hare, Saffari, and Torr
2011; He et al. 2013; Zhang, Ma, and Sclaroff 2014;
Kim et al. 2015). For example, the methods in (Comani-
ciu, Ramesh, and Meer 2003; Hare, Saffari, and Torr 2011;
He et al. 2013) update the object classifiers by considering
the distances of samples with respect to the bounding box
center, e.g., the samples close to the center receiving higher
weights. Some other methods (Duffner and Garcia 2013;
Yang, Lu, and Yang 2014) performs object segmentation dur-
ing the tracking process to exclude background information.
However, these methods are limited in dealing with cluttered
backgrounds (e.g., unreliable segmented object masks). To
improve the robustness, Kim et al. (Kim et al. 2015) proposed
to define an image patch based 8-neighbor graph to represent
the tracked object, in which the 8-neighbor graph denote that
if two nodes are 8-neighbors, they are connected by an edge,
and the edge weight is computed by their low-level feature
distance. This approach has two main shortcomings: i) It only
considers the spatial neighbors, and cannot capture the intrin-
sic relationship between patches; ii) It directly uses low-level
features, which are easily contaminated by video noises.

To handle this problem, we aim to learn a more robust
object representation for visual tracking. Given one bounding
box of the target object, we partition it into non-overlapping
local patches, which are described by color and gradient
histograms. We take these patches as graph nodes, and the
bounding box can thus be represented with a graph structure,
in which the weight of each node describes how likely it
belongs to the target object, and the edge weight between two
neighboring patches indicates their appearance compatibility.
In this work, we propose a novel weighted low-rank and
sparse representation model to dynamically learn the graph
for each frame that infers the edges and the node weights in
a joint fashion.

According to Wright et al. (Wright et al. 2010), an infor-
mative graph should have three characteristics: high discrimi-
native power, enhanced sparsity and adaptive neighborhood.
Therefore, we represent each patch descriptor as a linear
combination of other patch descriptors, and employ the non-
negativeness, sparsity, and low-rank constraints to suppress
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the effects of noises and/or corruptions of low-level features
in computing edges. Simultaneously, we optimize the node
weights in a semi-supervised way. i) The target bounding
box is shrunk and expanded to obtain the initial foreground
and background nodes, whose weights are set to be 1 and
0, respectively. ii) The node weights are diffused along the
computed edges.

To improve the tracking efficiency, we design a new Aug-
mented Lagrange Multiplier (ALM) based algorithm to effi-
ciently seek the solution of the proposed model. In particu-
lar, we employ the linearized Alternating Direction Method
(ADM) with adaptive penalty (Lin, Liu, and Su 2011) to sep-
arate the objective function into several convex subproblems
while avoiding some matrix inversions, and then optimize
them iteratively. To further reduce computational burden, we
utilize the randomized singular value thresholding (SVT)
method (Oh et al. 2015) to avoid direct computation on Sigu-
lar Value Decomposition (SVD). Finally, we incorporate the
optimized patch weights into the struck tracker (Hare, Saffari,
and Torr 2011) for object tracking and model updating.

This work makes the following three major contributions.
First, we propose an effective approach to mitigate the effects
of background information in visual tracking. Extensive ex-
periments show that the proposed method outperforms the
state-of-the-art trackers on two standard benchmarks, validat-
ing the effectiveness of the proposed approach. Second, we
present a novel weighted low-rank and sparse representation
model to learn a dynamic graph for each frame by consid-
ering non-negativeness, sparsity and low rank constraints
among image patches. The proposed model provides a gen-
eral solution that jointly infers the graph edges and the graph
node weights for visual tracking and related problems. It can
effectively exploit the intrinsic relationship of data, and thus
is robust to data noises and/or corruptions. Third, we design
a new ALM based algorithm to efficiently seek the solution
of the associated optimization problem. Thanks to the pro-
posed optimization algorithm, our tracker performs nearly
real-time.

Related Work
Various tracking methods have been proposed to improve
the robustness to nuisance factors including label ambiguity,
background cluttering, corruption and occlusion. Grabner et
al. (Grabner, Grabner, and Bischof 2008) presented a tracker
which limits the drifting problem while still being adaptive
to various appearance changes. The knowledge from labeled
data was used to build a fixed prior for online classifier while
unlabelled data was explored in a principled manner dur-
ing tracking. Babenko et al. (Babenko, Yang, and Belongie
2011) employed a bag of multiple samples, instead of a single
sample, to update the classifier reliably. To avoid the label
ambiguity, Hare et al. (Hare, Saffari, and Torr 2011) em-
ployed structured samples instead of binary-labeled samples
when training the classifier in the structured SVM frame-
work (Tsochantaridis et al. 2005).

To improve the robustness to background cluttering, one
representative strategy is to assign weights to different pixels
(or patches) in the bounding box. Comaniciu et al. (Comani-
ciu, Ramesh, and Meer 2003) employed the kernel-based

Figure 1: Illustration of the original, shrunk and expanded
bounding boxes, which are represented by the yellow, red
and blue colors, respectively. The optimized patch weights
are also shown visually for clarity, in which the hotter color
indicates the larger weight.

method to assign smaller weights to boundary pixels during
the histogram construction. He et al. (He et al. 2013) also
assumed that pixels far from a box center should be less im-
portant. These methods may fail when a target object has a
complicated shape or is occluded. Some works (Duffner and
Garcia 2013; Yang, Lu, and Yang 2014) integrated segmen-
tation results into tracking to alleviate the effects of back-
ground. These algorithms, however, are sensitive to segmen-
tation results. Kim et al. (Kim et al. 2015) developed a ran-
dom walk restart algorithm on 8-neighbor graph to compute
patch weights within target object bounding box. But the con-
structed graph may fail to capture the relationship between
patches.

Patch-based Graph Learning

Given one bounding box of the target object, we partition
it into non-overlapping local patches, and then assign each
patch with a weight that reflects its importance in describing
the target object to mitigate the effects of background infor-
mation. We concatenate these weighting patch descriptors
into a feature vector to represent the target object robustly,
and then combine this feature vector with Struck (Hare, Saf-
fari, and Torr 2011) to carry out object tracking. This section
will introduce a novel weighted low-rank and sparse represen-
tation model to compute the patch weights, and then design a
new ALM based algorithm to optimize the proposed model
efficiently.

Representation

Each bounding box of the target object is partitioned into n
non-overlapping patches, and a set of low-level appearance
features are extracted and further combined into one single d-
dimensional feature vector xi for characterizing the i-th patch.
We take these patches as graph nodes, and the bounding box
can thus be represented with a graph structure, in which the
weight of each node describes how likely it belongs to the
target object, and the edge weight between two neighboring
patches indicates their appearance compatibility.

On one hand, some patches in the target bounding
box may belong to background due to irregular shape,
scale variation and partial occlusion of the target object,
as shown in Fig. 1. Therefore, we assign a weight for
each graph node to mitigate the effects of background in-
formation in object tracking and object model updating.
On the other hand, instead of constructing spatially ad-
jacent graph in conventional methods (Yang et al. 2013;
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Kim et al. 2015), the edges are dynamically learnt for captur-
ing the intrinsic relationship of data, including global struc-
tures of the whole data (Zhuang et al. 2012; Liu et al. 2013)
and datum-adaptive neighborhoods (Yan and Wang 2009;
Yang et al. 2015). In this work, we propose a novel weighted
low-rank and sparse representation model to infer the edges
and the node weights in a joint manner, which can also pro-
vide a general solution for related problems.

All the feature vectors of n patches in one bounding box
form the data matrix X = {x1,x2, ...,xn} ∈ R

d×n. We
assume that object or background patches are all drawn from
the same low-rank subspace, and all patches lie on a union of
multiple subspaces. Similar assumptions have been justified
in some works on image and video segmentation (Cheng
et al. 2011; Li et al. 2016b). Thus, each patch descriptor
can be represented as a linear combination of remaining
patch descriptors, and the non-negative low-rank and sparse
representation of all patch vectors can then be formulated
in a joint fashion: X = XZ, Z ≥ 0, where Z ∈ R

n×n

is the low-rank and sparse representation coefficient matrix.
Sparse constraints can automatically select most informative
neighbors for each patch (higher-order relationships), making
the graph more powerful and discriminative (Yan and Wang
2009). Low-rank constraints can capture global structure of
whole patches, and thus preserve membership of patches that
belong to same subspace (Liu et al. 2013). We employ these
two constraints to better capture intrinsic relationship among
patches in constructing graph. Since the patch feature matrix
is often noisy or grossly corrupted, the non-negative low-
rank and sparse representation can be obtained by solving the
objective function:

min
Z,E

rank(Z) + α||Z||0 + λ||E||2,0,
s.t. X = XZ+E, Z ≥ 0,

(1)

where || · ||0, || · ||2,0 are the l0 norm and the l2,0 norm,
respectively. rank(·) denotes the rank function, and E ∈
R

d×n denotes the sparse sample-specific corruptions, i.e.,
some patches are corrupted and others are clean. α and λ are
the balanced parameters.

To mitigate the effects of background information, we
assign a weight wi for each patch i, and optimize them in a
semi-supervised way. Let q = {q1, q2, ..., qn}T be an initial
weight vector, in which qi = 1 if qi is a target object patch,
and qi = 0 indicating a background patch. q is computed
by the initial ground truth (for first frame) or the previous
tracking result (for subsequent frames) as the follows: for
i-th patch, if it belongs to the shrunk region of the bounding
box then qi is 1, and if it belongs to the expanded region
of the bounding box then qi is 0. Fig. 1 shows the details.
Although we adopt this simple initialization strategy, the
promising results on standard benchmarks in our experiments
have demonstrated its effectiveness. The remaining patches
are non-determined, and will be diffused by other patches.
To this end, we define an indication vector Γ that Γi = 1
indicates the i-th patch is foreground or background patch,
and Γi = 0 denotes the i-th patch is non-determined patch.
We integrate the patch weights into Eq. (1), and obtain

Algorithm 1 Optimization Procedure to Eq. (3)
Input: The patch feature matrix X and the initial weight vector q,

the parameters α, λ, β, γ and ξ;
Set Z0 = P0 = Q0 = Y2,0 = Y3,0 = 0, E0 = Y1,0 = 0,
w = 1, η = 0.01 ∗ ||X||2F , μ0 = 0.1, μmax = 1010, ρ = 1.1,
ε1 = 10−6, maxIter = 35, and k = 0.

Output: Z, E and w.
1: while not converged do
2: Update Zk+1, Pk+1 and Qk+1 by Eq. (6);
3: Update Ek+1 by APG algorithm;
4: Update wk+1 by solving Eq. (6);
5: Update Lagrangian multipliers as follows: Y1,k+1 = Y1,k+

μk(Wk+1 ◦ (X−XZk+1 −Ek+1)),
6: Y2,k+1 = Y2,k + μk(Zk+1 −Pk+1), Y3,k+1 = Y3,k +

μk(Zk+1 −Qk+1);
7: Update μk+1 by μk+1 = min(μmax, ρμk);
8: Update k by k = k + 1;
9: Check the convergence condition: the maximum element

changes of Z, P, Q, E and w between two consecutive iter-
ations are less than ε1 or the maximum number of iterations
reaches maxIter.

10: end while

min
Z,E,w

rank(Z) + α||Z||0 + λ||E||2,0 + β
∑

i,j

Zij(wi −wj)
2

+
γ

2
||Γ ◦ (w − q)||2 + ξ

2
||w||2,

s.t. W ◦X = W ◦ (XZ+E), Z ≥ 0, w ≥ 0,
(2)

where W = [wT ;wT ; ...;wT ] ∈ R
d×n, and ◦ indicates the

element-wise product. β, γ and ξ are the balanced parameters.
The fourth and fifth terms are the smoothness constraint
and the fitting constraint, respectively. Since the indication
vector Γ removes fitness constraint of non-determined patch
weights, we introduce the last term to avoid overfitting. In
Eq. 2, Z indicates the graph affinity matrix, and larger Zij

will encourage wi is closer to wj by minimizing the fourth
term.

Optimization

Due to the non-convexity of the rank function and the l0
norm, it is difficult to directly minimize Eq. (2). To overcome
these obstacles, we will use convex surrogates for all the
non-convex low rank and sparsity terms. Through convex
relaxation, we replace rank function and the l0 norm with
the nuclear norm and the l1 norm, respectively. Thus, Eq. (2)
can be relaxed as:

min
Z,E,w

||Z||∗ + α||Z||1 + λ||E||2,1 + β
∑

i,j

Zij(wi −wj)
2

+
γ

2
||Γ ◦ (w − q)||2 + ξ

2
||w||2,

s.t. W ◦X = W ◦ (XZ+E), Z ≥ 0, w ≥ 0,
(3)

where || · ||∗, || · ||1, || · ||2,1 are the nuclear norm, the l1 norm
and the l2,1 norm, respectively. Next, we present an efficient
algorithm to solve Eq. (3).

4128



We first use the linearized ADM with adaptive penalty
(LADMAP) (Lin, Liu, and Su 2011) to avoid some matrix in-
versions in optimization. Two auxiliary variables P ∈ R

n×n

and Q ∈ R
n×n are introduced to make Eq. (3) separable:

min
Z,E,w,P,Q

||Z||∗ + α||P||1 + λ||E||2,1

+ β
∑

i,j

Qij(wi −wj)
2 +

γ

2
||Γ ◦ (w − q)||2 + ξ

2
||w||2,

s.t. W ◦X = W ◦ (XZ+E), Z = P, Z = Q,Q ≥ 0,

w ≥ 0,
(4)

The augmented Lagrangian function of (4) is

L(Z,P,Q,E,w)

= ||Z||∗ + α||P||1 + λ||E||2,1 + β
∑

i,j

Qij(wi −wj)
2

+
γ

2
||Γ ◦ (w − q)||2 + ξ

2
||w||2

+ f(Z,P,Q,E,w,Y1,Y2,Y3, μ)− 1

2μ
(||Y1||2F

+ ||Y2||2F + ||Y3||2F ),
(5)

with Q ≥ 0, and w ≥ 0. μ > 0 is the penalty parameter, and
f(Z,P,Q,E,w,Y1,Y2,Y3, μ) =

μ
2 (||W ◦ (X − XZ −

E)+Y1/μ||2F + ||Z−P+Y2/μ||2F + ||Z−Q+Y3/μ||2F ).
Y1, Y2 and Y3 are the Lagrangian multipliers. LADMDP al-
ternatively updates one variable by minimizing L with fixing
other variables. With simple algebra, the updating schemes
of (k + 1)-th iteration are as follows,

Zk+1 = argmin
Z

||Z||∗ +
ημk

2
||Z− Zk||2F + 〈∇Zfk,Z− Zk〉,

Pk+1 = argmin
P

α||P||1 +
μk

2
||Zk+1 −P+Y2,k/μk||2F ,

Qk+1 = [Zk+1 + (Y3,k − βW′
k)/μk]+,

Ek+1 = argmin
E

λ||E||2,1 +
μk

2
||Wk ◦ (X−XZk+1 −E)

+Y1,k/μk||2F ,

wk+1 = [(2β(Dk+1 −Qk+1 −QT
k+1) + γΓ′ + ξI

+ μkD1,k+1)
−1(γΓ ◦ q− μkd2,k+1)]+,

(6)
where ∇Zf is the partial derivative of f with respect to
Z, and η = 0.01 ∗ ||X||2F . fk is the abbreviation of
f(Zk,Pk,Qk,Ek,wk,Y1,k,Y2,k,Y3,k, μk). The operator
[u]+ turns negative elements in u to 0 while keeps the
rest. I is the identity matrix, and W′ is the matrix with
the element W′

ij = (wi − wj)
2, and D is the degree ma-

trix of (Q +QT ) that D = diag{d11, d22, ..., dnn}, where
dii =

∑
j(Qij +Qji). Similarly, D1 is the degree matrix of

(X−XZ−E)T ◦ (X−XZ−E)T . d2 is the vector that its
i-th element equals to summing all elements of i-th column
in (X−XZ−E) ◦ (Y1/μ), and Γ′ = diag{Γ1,Γ2, ...,Γn}.
We present the complete derivations of above subproblems
in the supplementary file.

Since each subproblem of Eq. (6) is convex, we can guaran-
tee that the solution by our algorithm satisfies the Nash equi-

librium conditions (Xu and Yin 2013). Alg. 1 summarizes the
optimization procedure. Note that: i) Pk+1 can be solved by
the soft-thresholding (or shrinkage) method (Liu et al. 2013)
with closed-form solution. ii) The subproblem of Ek+1 does
not have a closed-form solution, and we employ the acceler-
ated proximal gradient (APG) algorithm (Parikh and Boyd
2014) to solve it. iii) The solution of Zk+1 can be obtained
by the singular value thresholding (SVT) method (Liu et al.
2013), which involves one SVD operation at each iteration,
and thus also suffers from high computational cost. Therefore,
we employ the randomized SVT method (Oh et al. 2015) to
approximate the solution of original SVT while preserving
its accuracy.

Structured Output Tracking

In this section, we incorporate the optimized patch
weights into the conventional tracking-by-detection algo-
rithm, Struck (Hare, Saffari, and Torr 2011). Struck selects
the optimal target bounding box c∗t in the t-th frame by max-
imizing a classification score:

c∗t = argmax
c

〈ht−1,xt,c〉, (7)

where ht−1 is the normal vector of a decision plane of (t−1)-
th frame, and xt,c = [xt,1;xt,2; ...;xt,n] denotes the descrip-
tor representing a bounding box c in t-th frame. Instead of
using binary-labeled sample, Struck employs structured sam-
ple that consists of a target bounding box and nearby boxes in
the same frame to prevent the labelling ambiguity in training
the classifier. Specifically, it constrains that the confidence
score of an target bounding box is larger than that of a nearby
box by a margin determined by the overlap ratio between two
boxes. By this way, Struck can reduce adverse effects of false
labelling.

Given the bounding box of the target object in previ-
ous frame t − 1, we first set a searching window in cur-
rent frame t. For i-th candidate bounding box within the
searching window, we weight its patch feature descriptor xt,i

by the weight at−1,i = 1/(1 + exp(−σŵt−1,i)), and con-
catenate them into a vector as the feature representation:
x̂ = [at−1,1xt,1; at−1,2xt,2; ...;at−1,nxt,n]. Herein, ŵ is
the normalized vector of w, and the parameter σ is fixed
to be 35 in this work. The optimal bounding box c∗t can
be selected to update the object location by maximizing the
classification score:

c∗t = argmax
c

(ω〈ht−1, x̂t,c〉+ (1− ω)〈h0, x̂t,c〉),
(8)

where h0 is learnt in initial frame, which can prevent it from
learning drastic appearance changes, and ω is a balance pa-
rameter. Given the tracked bounding box c∗t , we compute
the patch weights at by Eq. (3), and then update the classi-
fier ht. To prevent the effects of unreliable tracking results,
we update the classifier only when the confidence score of
tracking result is larger than a threshold θ. In this paper, the
confidence score of tracking result in t-th frame is defined
as the average similarity between the weighted descriptor
of the tracked bounding box and the positive support vec-
tors: 1

|St|
∑

s∈St
〈s, x̂t,c∗

t
〉, where St is the set of the positive

support vectors at time t.

4129



0 10 20 30 40 50
0

10

20

30

40

50

Iteration

S
to

p
 C

ri
te

ri
a

Convergence

Figure 2: Convergence of the proposed algorithm on all video
sequences of OTB100.

Difference with Related Work

It should be noted that the proposed tracking algorithm is
significantly different from the recently proposed approaches
that use low-rank or sparse representation for object track-
ing (Zhong, Lu, and Yang 2012; Zhang et al. 2014). In these
methods, reconstruction errors or representation coefficients
are usually adopted to compute the confidence of candidates
in the Bayesian filtering framework. While we employ the
low-rank and sparse representation to learn a dynamic graph
for each frame, in which the node weights are used to sup-
press the effects of background information in the tracking-
by-detection framework.

In addition, our approach is also significantly different
from the recently proposed tracker, SOWP (Kim et al. 2015),
in several aspects. First, it learns a dynamic graph for each
frame by considering the nonnegativeness, sparsity, and low-
rank constraints to suppress the effects of noises and/or cor-
ruptions of low-level features in computing edges. Second,
it optimizes the edges and the node weights in a joint fash-
ion, while SOWP first computes the edge weights and then
the node weights. Third, it simultaneously integrates the ini-
tial foreground and background information into an unified
model, while SOWP requires two calculations on its model to
obtain the final patch weights, one for foreground and another
for background. Fourth, it designs an efficient algorithm to
optimize the proposed model, and achieves comparable effi-
ciency with SOWP. Finally, it improves the Struck tracking
algorithm by considering the initial classifier in the current
classification process, which can prevent it from learning
drastic appearance changes.

Experiments

The experiments are carried out on a PC with an Intel i7
4.0GHz CPU and 32GB RAM, and implemented in C++. The
proposed tracker performs at about 10 frames per second, and
the convergence curve of the proposed algorithm is presented
in Fig. 2.

Evaluation Settings

Parameters. For fair comparisons, we fix all parameters and
other settings in experiments. In Eq. (2), we empirically set
{α, λ, β, γ, ξ} = {1, 0.1, 5, 18, 1}. In Struck, we empirically
set {ω, θ} = {0.67, 0.2}. Besides, we partition all bounding
box into 64 non-overlapping patches to balance accuracy-
efficiency trade-off, and extract RGB and gradient histograms
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Figure 3: Evaluation results on OTB100 with 9 conventional
trackers. The representative score of PR/SR is presented in
the legend. OPE denotes the one-pass evaluation.
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Figure 4: TRR curves on NUS-PRO, where twenty trackers
are shown here.

for each patch, where the dimensions of gradient and each
color channel is set to be 8. To improve efficiency, each frame
is scaled so that the minimum side length of a bounding box
is 32 pixels, and the side length of a searching window is
fixed to be 2

√
WH , where W and H are the width and height

of the scaled bounding box, respectively.
It is worth noting that our approach is insensitive to pa-

rameters. When we slightly adjust some parameters, tracking
performance only changes a little, e.g., setting β as 2 and
setting ξ as 2, we find the results are slightly different from
the current settings (β = 2 obtains 0.7% lower in PR, 0.1%
better in SR, and ξ = 2 obtains 0.1% lower in both PR and
SR). Although Eq. (3) involves many parameters, we can eas-
ily tune them as some of them are correlated, e.g., empirically
γ = 1.6β.

OTB100 benchmark. We evaluate the proposed tracking
method on the OTB100 benchmark dataset (Wu, Lim, and
Yang 2015). OTB100 is a large dataset, which includes 100
image sequences with ground-truth object locations, and is
the extension of OTB50 (Wu, Lim, and Yang 2013). We
employ precision rate (PR) and success rate (SR) to measure
the quantitative performance of various trackers.

NUS-PRO challenge. We also compare our approach with
other tracking approaches on another large-scale benchmark
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Table 1: Attribute-based PR/SR scores on OTB100 benchmark (Wu, Lim, and Yang 2015) compared with recent 8 leading
trackers. The best and the second best results are in red and green colors, respectively.

HCF SOWP MEEM MUSTer KCF LCT DSST DLT Ours
IV 0.817/0.540 0.777/0.554 0.740/0.517 0.782/0.600 0.708/0.474 0.746/0.566 0.723/0.489 0.522/0.408 0.838/0.573
SV 0.802/0.488 0.750/0.478 0.740/0.474 0.715/0.518 0.639/0.399 0.686/0.492 0.667/0.413 0.542/0.399 0.813/0.504

OCC 0.767/0.525 0.754/0.528 0.741/0.504 0.734/0.554 0.622/0.438 0.682/0.507 0.615/0.426 0.454/0.335 0.820/0.562
DEF 0.791/0.530 0.741/0.527 0.754/0.489 0.689/0.524 0.617/0.436 0.689/0.499 0.568/0.412 0.451/0.295 0.857/0.582
MB 0.797/0.573 0.710/0.557 0.722/0.545 0.699/0.557 0.617/0.456 0.673/0.532 0.636/0.465 0.427/0.353 0.815/0.591
FM 0.797/0.555 0.719/0.542 0.735/0.529 0.691/0.539 0.628/0.455 0.675/0.527 0.602/0.440 0.426/0.345 0.777/0.549
IPR 0.854/0.559 0.828/0.567 0.794/0.529 0.773/0.551 0.693/0.465 0.782/0.557 0.724/0.485 0.471/0.348 0.856/0.573
OPR 0.810/0.537 0.790/0.549 0.798/0.528 0.748/0.541 0.675/0.454 0.750/0.541 0.675/0.453 0.517/0.376 0.855/0.577
OV 0.677/0.474 0.633/0.497 0.685/0.488 0.591/0.469 0.498/0.393 0.558/0.452 0.487/0.374 0.558/0.384 0.753/0.533
BC 0.847/0.587 0.781/0.575 0.752/0.523 0.786/0.579 0.716/0.498 0.740/0.553 0.708/0.481 0.509/0.373 0.867/0.614
LR 0.787/0.424 0.713/0.416 0.605/0.355 0.677/0.477 0.545/0.306 0.490/0.330 0.595/0.311 0.615/0.422 0.732/0.417
All 0.837/0.562 0.803/0.560 0.781/0.530 0.774/0.577 0.692/0.475 0.762/0.562 0.695/0.475 0.526/0.384 0.865/0.586

dataset, NUS-PRO (Li et al. 2016a). This large-scale database
contains 365 challenging image sequences of pedestrians and
rigid objects, and most of them are captured from moving
cameras. Each sequence is annotated target location and
occlusion level for evaluation. We employ the threshold-
response relationship (TRR) with three criteria (Criterion
I, II and III) of occlusion annotations on entire dataset to
evaluate our method.

Comparison Results

We first present the evaluation results on OTB100 against 9
conventional trackers (Wu, Lim, and Yang 2015) in Fig. 3.
The comparison curves show that our tracker significantly
outperforms the Struck tracker, achieving 35.2% gain in PR
and 26.6% gain in SR over Struck.

Tab. 1 presents the attribute-based comparison results of
our tracker with recent 8 leading trackers on OTB100, in-
cluding HCF (Ma et al. 2015a), SOWP (Kim et al. 2015),
MEEM (Zhang, Ma, and Sclaroff 2014), MUSTer (Hong et al.
2015), KCF (Henriques et al. 2015), LCT (Ma et al. 2015b),
DSST (Danelljan et al. 2014) and DLT (Wang and Yeung
2013). The superior results over other methods demonstrate
the effectiveness of the proposed approach in handling se-
quences with IV, SV, OCC, DEF, MB, IPR, OPR, OV and BC.
Moreover, for FM, we achieve comparable results against
HCF. However, unsatisfying results are usually generated
in low-resolution video sequences. It may attribute to the
weakness of our used features (color and gradient) in repre-
senting the target object with less appearance information.
In addition, the qualitative comparisons and analysis of our
approach with several typical trackers are presented in the
supplementary file due to space limitation.

For comprehensive comparisons, we further evaluate our
method on NUS-PRO against 20 conventional trackers (Li
et al. 2016a) in Fig. 4. We can see that the proposed tracker
also achieves superior performance than other trackers. The
results of the top 3 performing methods (ASLA (Jia, Lu,
and Yang 2012), SCM (Zhong, Lu, and Yang 2012) and
LOT (Oron et al. 2012)) show that the combination of the
local feature representation and the particle filter framework
can obtain promising tracking performance. Although adopt-
ing the local feature representation only, we achieve the best

Table 2: The performance of three versions of the proposed
method.

Ours Ours-noW Ours-8nG Ours-ovF
PR 0.865 0.795 0.829 0.840
SR 0.586 0.558 0.569 0.574

performance on NUS-PRO.

Component Analysis

To justify the significance of the main components using
OTB100, we implement three versions of our approach for
empirical analysis. The three versions are: 1) Ours-noW, that
removes the patch weights in our tracking algorithm. 2) Ours-
8nG, that substitutes the dynamic graph by an 8-neighbor
graph to compute the patch weights. 3) Ours-OvF, that re-
moves the last term in Eq. (2). Tab. 2 presents the evaluation
results. It can be seen that the performance achieved by our
versions demonstrate the significance of the main compo-
nents. Furthermore, introducing patch weights into the track-
ing algorithm benefits to suppress the effects of background
by observing Ours and Ours-8nG superior to Ours-noW. In
addition, Ours outperforms Ours-8nG, which suggests that
the dynamic graph is beneficial to optimize the patch weights.
Finally, Ours outperforms Ours-ovF, justifying the effective-
ness of avoiding overfitting in Eq. (3).

Conclusion

In this paper, we have proposed an effective approach for
visual tracking by suppressing the effects of background in-
formation. A patch-based graph has been learnt dynamically
by capturing the global structure and local linear relationship
among patches. To reduce the computational complexities,
we have presented an efficient algorithm for the proposed
model by solving several convex subproblems. Finally, the
optimized patch weights are incorporated into Struck tracker
to carry out object tracking. In future work, we will replace
hand-crafted features with deep feature learning for more
robust object representation, and integrate fast feature pyra-
mids into our framework to achieve scale adaptation without
increasing much computational cost.
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